首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15155篇
  免费   1158篇
  国内免费   1258篇
  2024年   36篇
  2023年   244篇
  2022年   439篇
  2021年   603篇
  2020年   602篇
  2019年   679篇
  2018年   589篇
  2017年   489篇
  2016年   500篇
  2015年   549篇
  2014年   782篇
  2013年   998篇
  2012年   605篇
  2011年   679篇
  2010年   483篇
  2009年   690篇
  2008年   650篇
  2007年   783篇
  2006年   688篇
  2005年   613篇
  2004年   564篇
  2003年   551篇
  2002年   463篇
  2001年   410篇
  2000年   376篇
  1999年   344篇
  1998年   331篇
  1997年   288篇
  1996年   278篇
  1995年   232篇
  1994年   224篇
  1993年   214篇
  1992年   201篇
  1991年   163篇
  1990年   158篇
  1989年   135篇
  1988年   124篇
  1987年   118篇
  1986年   111篇
  1985年   132篇
  1984年   88篇
  1983年   50篇
  1982年   77篇
  1981年   70篇
  1980年   35篇
  1979年   47篇
  1978年   26篇
  1977年   18篇
  1975年   15篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 902 毫秒
971.
Pest and disease problems are important constraints of cassava production and host plant resistance is the most efficient method of combating them. Breeding for host plant resistance is considerably slowed down by the crop’s biological constraints of a long growth cycle, high levels of heterozygosity and a large genetic load. More efficient methods such as gene cloning and transgenesis are required to deploy resistance genes. To facilitate the cloning of resistance genes, bacterial artificial chromosome (BAC) library resources have been developed for cassava. Two libraries were constructed from the cassava clones, TMS 30001, resistant to the cassava mosaic disease (CMD) and the cassava bacterial blight (CBB), and MECU72, resistant to cassava white fly. The TMS30001 library has 55 296 clones with an insert size range of 40–150 kb with an average of 80 kb, while the MECU72 library consists of 92 160 clones and an insert size range of 25–250 kb average of 93 kb. Based on a genome size of 772 Mb, the TMS30001 and MECU72 libraries have a 5 and 11.3 haploid genome equivalents and a 95 and 99 chance of finding any sequence, respectively. To demonstrate the potential of the libraries, the TMS30001 library was screened by southern hybridization using a cassava analog (CBB1) of the Xa21 gene from rice that maps to a region containing a QTL for resistance to CBB as probe. Five BAC clones that hybridized to CBB1 were isolated and a Hind III fingerprint revealed 2–3 copies of the gene in individual BAC clones. A larger scale analysis of resistance gene analogs (RGAs) in cassava has also been conducted in order to understand the number and organization of RGAs. To scan for gene and repeat DNA content in the libraries, end-sequencing was performed on 2301 clones from the MECU72 library. A total of 1705 unique sequences were obtained with an average size of 715 bp. Database homology searches using BLAST revealed that 458 sequences had significant homology with known proteins and 321 with transposable elements. The use of the library in positional cloning of pest and disease resistance genes is discussed.  相似文献   
972.
We aim at studying adaptation to genetic and environmental stress and its evolutionary implications at different levels of biological organization. Stress influences cellular processes, individual physiology, genetic variation at the population level, and the process of natural selection. To investigate these highly connected levels of stress effects, it is advisable - if not critical - to integrate approaches from ecology, evolution, physiology, molecular biology and genetics. To investigate the mechanisms of stress resistance, how resistance evolves, and what factors contribute to and constrain its evolution, we use the well-defined model systems ofDrosophila species, representing both cosmopolitan species such asD. melanogaster with a known genome map, and more specialized and ecologically well described species such as the cactophilicD. buzzatii. Various climate-related stresses are used as model stresses including desiccation, starvation, cold and heat. Genetic stress or genetic load is modelled by studying the consequences of inbreeding, the accumulation of (slightly) deleterious mutations, hybridization or the loss of genetic variability. We present here a research plan and preliminary results combining various approaches: molecular techniques such as microarrays, quantitative trait loci (QTL) analyses, quantitative PCR, ELISA or Western blotting are combined with population studies of resistance to climatic and genetic stress in natural populations collected across climatic gradients as well as in selection lines maintained in the laboratory.  相似文献   
973.
AIMS: The aim of this work was to investigate the connection between oxidation-reduction (redox) potential and stationary phase induction of RpoS in Salmonella Typhimurium. METHODS AND RESULTS: A lux-based reporter was used to evaluate RpoS activity in S. Typhimurium pure cultures. During growth of S. Typhimurium, a drop in the redox potential of the growth medium occurred at the same time as RpoS induction and entry into stationary phase. An artificially induced decrease in redox potential earlier during growth reduced the time to RpoS induction and Salmonella entered the stationary phase prematurely. In contrast, under high redox conditions, Salmonella grew unaffected and entered the stationary growth phase as normal, although RpoS induction did not occur. As a consequence, stationary phase cells grown in the high redox environment were significantly more heat sensitive (P < 0.05) than those grown under normal conditions. CONCLUSIONS: This work suggests that redox potential can regulate RpoS levels in S. Typhimurium and can thus, control the expression of genes responsible for thermal resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to manipulate RpoS induction and control stationary phase gene expression can have important implications in food safety. Early RpoS induction under low redox potential conditions can lead to enhanced resistance in low cell concentrations to inimical processes such as heat stress. Inhibition of RpoS induction would abolish stationary phase protective properties making cells more sensitive to common food control measures.  相似文献   
974.
AIMS: To study the effects of adaptation and stress on the resistance to benzalkonium chloride (BC) and cross-resistance to antibiotics in Escherichia coli. METHODS AND RESULTS: Precultivation of E. coli ATCC 11775 and E. coli DSM 682 in the presence of subinhibitory concentrations of BC or stress inducers (salicylate, chenodeoxycholate and methyl viologen) resulted in higher minimum inhibitory concentration (MIC) of BC and chloramphenicol (CHL). Adaptation to growth in sixfold of the initial MIC of BC resulted in stable BC resistance and enhanced tolerance to several antibiotics and ethidium bromide (EtBr). The MIC of CHL increased more than 10-fold for both strains. Enhanced efflux of EtBr in adapted E. coli ATCC 11775 indicated that the observed resistance was due to efflux. Changes in outer membrane protein profiles were detected in the BC-adapted cells. There were no indications of lower membrane permeability to BC. CONCLUSIONS: Induction of stress response or gradual adaptation to BC or CHL results in acquired cross-tolerance between BC and antibiotics in E. coli. Enhanced efflux was one of the observed differences in adapted cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Provided not taking due precautions, extensive use of disinfectants could lead to emergence of antibiotic-resistant isolates.  相似文献   
975.
AIMS: To modify a strain of Salmonella serotype Typhimurium to express unique marker traits and then define how the concentration of the marker in bovine faeces affects the probability of its detection by culture preceded by immunomagnetic separation (IMS). METHODS AND RESULTS: DNA encoding for the production of green fluorescent protein (gfp) and resistance to kanamycin was inserted into the bacterial chromosome of Salm. Typhimurium. Transposon insertion was demonstrated by Southern blot hybridization. Varying amounts of one electroporant (gfpSal-1) were inoculated into suspensions of bovine faeces and attempts made to isolate gfpSal-1 using a protocol based on pre-enrichment incubation, IMS and enrichment in selective media. Isolates of gfpSal-1 were differentiated from wild strains of Salmonella using fluorescence under u.v. light and expression of kanamycin resistance. A logistic and Gompertz function each derived from the dose-response data partially explained the observations with the fit of the Gompertz function judged to be superior. The 10, 50 and 90% limits of detection from the Gompertz function were estimated to be 1.92, 2.03 and 2.27 CFU g(-1) respectively. CONCLUSIONS: Reliance on the traditional concept of 'limit of detection' could introduce unacceptable errors in the interpretation of test findings when the concentration of Salm. Typhimurium in bovine faeces (pooled or individual) is below ca 3 CFU g(-1) of faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: The dose-response curve can be used to aid the design of protocols for detecting Salmonella in individual and pooled faecal specimens. The experiments demonstrate that both reporter genes in tandem are useful for studying the performance of culture-based methods for detecting pathogens in faeces.  相似文献   
976.
The objective of this study was to assess the frequency of pollen-mediated gene flow from a transgenic rice line, harbouring the gusA and the bar genes encoding respectively, -glucuronidase and phosphinothricin acetyl transferase as markers, to the red rice weed and conventional rice in the Spanish japonica cultivar Senia. A circular field trial design was set up to investigate the influence of the wind on the frequency of pollination of red rice and conventional rice recipient plants with the transgenic pollen. Frequencies of gene flow based on detection of herbicide resistant, GUS positive seedlings among seed progenies of recipient plants averaged over all wind directions were 0.036 ± 0.006% and 0.086 ± 0.007 for red rice and conventional rice, respectively. However, for both red rice and conventional rice, a clear asymmetric distribution was observed with pollination frequency favoured in plants placed under the local prevailing winds. Southern analyses confirmed the hemizygous status and the origin of the transgenes in progenies of surviving, GUS positive plants. Gene flow detected in conventional rice planted at 1, 2, 5 and 10 m distance revealed a clear decrease with increasing distance which was less dramatic under the prevailing wind direction. Consequences of these findings for containment of gene flow from transgenic rice crops to the red rice weed are discussed. The precise determination of the local wind conditions at flowering time and pollination day time appear to be of primary importance for setting up suitable isolation distances.  相似文献   
977.
The molecular mechanisms of HIV drug resistance were studied using molecular dynamics simulations of HIV-1 protease complexes with the clinical inhibitor indinavir. One nanosecond molecular dynamics simulations were run for solvated complexes of indinavir with wild type protease, a control variant and 12 drug resistant mutants. The quality of the simulations was assessed by comparison with crystallographic and inhibition data. Molecular mechanisms that contribute to drug resistance include structural stability and affinity for inhibitor. The mutants showed a range of structural variation from 70 to 140% of the wild type protease. The protease affinity for indinavir was estimated by calculating the averaged molecular mechanics interaction energy. A correlation coefficient of 0.96 was obtained with observed inhibition constants for wild type and four mutants. Based on this good agreement, the trends in binding were predicted for the other mutants and discussed in relation to the clinical data for indinavir resistance. Figure Poincare map representation for WT protease-indinavir complex. The side chain of Tyr 59 showing the positions of hydrogen atoms.This revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   
978.
A complete set of candidate disease resistance ( R) genes encoding nucleotide-binding sites (NBSs) was identified in the genome sequence of japonica rice ( Oryza sativa L. var. Nipponbare). These putative R genes were characterized with respect to structural diversity, phylogenetic relationships and chromosomal distribution, and compared with those in Arabidopsis thaliana. We found 535 NBS-coding sequences, including 480 non-TIR (Toll/IL-1 receptor) NBS-LRR (Leucine Rich Repeat) genes. TIR NBS-LRR genes, which are common in A. thaliana, have not been identified in the rice genome. The number of non-TIR NBS-LRR genes in rice is 8.7 times higher than that in A. thaliana, and they account for about 1% of all of predicted ORFs in the rice genome. Some 76% of the NBS genes were located in 44 gene clusters or in 57 tandem arrays, and 16 apparent gene duplications were detected in these regions. Phylogenetic analyses based both NBS and N-terminal regions classified the genes into about 200 groups, but no deep clades were detected, in contrast to the two distinct clusters found in A. thaliana. The structural and genetic diversity that exists among NBS-LRR proteins in rice is remarkable, and suggests that diversifying selection has played an important role in the evolution of R genes in this agronomically important species. (Supplemental material is available online at .)Communicated by R. HagemannThe first three authors contributed equally to this work  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号