首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15155篇
  免费   1158篇
  国内免费   1258篇
  2024年   36篇
  2023年   244篇
  2022年   439篇
  2021年   603篇
  2020年   602篇
  2019年   679篇
  2018年   589篇
  2017年   489篇
  2016年   500篇
  2015年   549篇
  2014年   782篇
  2013年   998篇
  2012年   605篇
  2011年   679篇
  2010年   483篇
  2009年   690篇
  2008年   650篇
  2007年   783篇
  2006年   688篇
  2005年   613篇
  2004年   564篇
  2003年   551篇
  2002年   463篇
  2001年   410篇
  2000年   376篇
  1999年   344篇
  1998年   331篇
  1997年   288篇
  1996年   278篇
  1995年   232篇
  1994年   224篇
  1993年   214篇
  1992年   201篇
  1991年   163篇
  1990年   158篇
  1989年   135篇
  1988年   124篇
  1987年   118篇
  1986年   111篇
  1985年   132篇
  1984年   88篇
  1983年   50篇
  1982年   77篇
  1981年   70篇
  1980年   35篇
  1979年   47篇
  1978年   26篇
  1977年   18篇
  1975年   15篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 402 毫秒
951.
Transformation of the nematode-trapping fungus Arthrobotrys oligospora   总被引:2,自引:0,他引:2  
The nematode-trapping fungus Arthrobotrys oligospora was transformed to hygromycin resistance using the hygromycin-B phosphotransferase gene from Escherichia coli under the control of various heterologous fungal promoters. Plasmid DNA was introduced into fungal protoplasts by polyethylene glycol/CaCl2 treatment. Transformation frequencies varied between 1-6 transformants per microgram DNA. Seven out of 13 integration events analyzed from transformants were single copy integrations, whereas the remaining were multiple and more complex integrations. The addition of restriction enzymes during transformations increased the frequency of single copy integrations. Co-transformation, using the E. coli uidA gene encoding the beta-glucuronidase reporter gene under the control of an Aspergillus nidulans promoter, occurred at frequencies of up to 63%.  相似文献   
952.
Jurkat T leukemic cells respond to Etoposide, antineoplastic agent which targets the DNA unwinding enzyme, Topoisomerase II, and TNF-Related-Apoptosis-Inducing-Ligand (TRAIL), 34 kDa transmembrane protein, which displays minimal or no toxicity on normal cells and tissues, not only disclosing the occurrence of apoptosis but also a kind of resistance. A similar rate of viability upon the exposure to these two drugs up to 24 h has been evidenced, followed by the occurrence of a rescue process against TRAIL, not performed against Etoposide, along with an higher number of dead cells upon Etoposide exposure, in comparison with TRAIL treatment. These preliminary results let us to speculate on the possible involvement of PI-3-kinase in TRAIL resistance disclosed by surviving cells (20%), may be phosphorylating Akt-1 and, in parallel, IkappaB alpha on both serine and tyrosine residues. On the other hand, in Etoposide Jurkat exposed cells Ser 32-36 phosphorylation of IkappaB alpha is not sufficient to overbalance the apoptotic fate of the cells, since Bax increase, IAP decrease, and caspase-3 activation determine the persistence of the apoptotic state along with the occurrence of cell death by necrosis. Thus, the existence of a balance between apoptotic and rescue response in 20% of cells surviving to TRAIL suggests the possibility of pushing it in favor of cell death in order to improve the yield of pharmacological strategies.  相似文献   
953.
Lepsík M  Kríz Z  Havlas Z 《Proteins》2004,57(2):279-293
A subnanomolar inhibitor of human immunodeficiency virus type 1 (HIV-1) protease, designated QF34, potently inhibits the wild-type and drug-resistant enzyme. To explain its broad activity, the binding of QF34 to the wild-type HIV-1 protease is investigated by molecular dynamics simulations and compared to the binding of two inhibitors that are used clinically, saquinavir (SQV) and indinavir (IDV). Analysis of the flexibility of protease residues and inhibitor segments in the complex reveals that segments of QF34 were more mobile during the dynamics studies than the segments of SQV and IDV. The dynamics of hydrogen bonding show that QF34 forms a larger number of stable hydrogen bonds than the two inhibitors that are used clinically. Absolute binding free energies were calculated with molecular mechanics-generalized Born surface area (MM-GBSA) methodology using three protocols. The most consistent results were obtained using the single-trajectory approach, due to cancellation of errors and inadequate sampling in the separate-trajectory protocols. For all three inhibitors, energy components in favor of binding include van der Waals and electrostatic terms, whereas polar solvation and entropy terms oppose binding. Decomposition of binding energies reveals that more protease residues contribute significantly to the binding of QF34 than to the binding of SQV and IDV. Moreover, contributions from protease main chains and side chains are balanced in the case of QF34 (52:48 ratio, respectively), whereas side chain contributions prevail in both SQV and IDV (main-chain:side-chain ratios of 41:59 and 45:55, respectively). The presented results help explain the ability of QF34 to inhibit multiple resistant mutants and should be considered in the design of broad-specificity second-generation HIV-1 protease inhibitors.  相似文献   
954.
955.
Summary. The polyamines spermine, spermidine and putrescine are ubiquitous cell components. If they accumulate excessively within the cells, due either to very high extracellular concentrations or to deregulation of the systems which control polyamine homeostasis, they can induce toxic effects. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper containing amine oxidases. Polyamine concentrations are high in growing tissues such as tumors. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. These enzymes catalyze the oxidative deamination of biogenic amines and polyamines to generate the reaction products H2O2 and aldehyde(s) that are able to induce cell death in several cultured human tumor cell lines. H2O2 generated by the oxidation reaction is able to cross the inner membrane of mitochondria and directly interact with endogenous molecules and structures, inducing an intense oxidative stress. Since amine oxidases are involved in many crucial physiopathological processes, investigations on their involvement in human diseases offer great opportunities to enter novel classes of therapeutic agents.  相似文献   
956.
The effluent of a pharmaceutical company was examined microbiologically. Its bacterial count was 2.15 × 105 c.f.u./ml and there was evidence of faecal contamination with MPN of > 1800. The organisms encountered included Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Serratia marcescens and Pseudomonas aeruginosa. The resistances of the 25 bacterial strains isolated from the effluent to the commonly used antibiotics were studied. About 80% of the isolates were resistant to Amoxycillin, 76% to Nitrofurantoin, 64% to Cotrimoxazole and Augmentin, 60% were resistant to Nalidixic acid, 52% were resistant to Tetracycline and Ofloxacin, while resistance of 12% was obtained for Gentamicin. Among the eight antibiotics tested, seven patterns of drug resistance were obtained and all of them were multiple-drug resistance with the number of antibiotics ranging from 2–8. All the strains of E. coli and S. aureus had high MIC values for Cloxacillin and Amoxycillin. In all, 13 strains of the bacterial isolates had evidence for the production of -lactamases. The potential of the effluent in spreading drug resistance and the public health implications are discussed.  相似文献   
957.
Bacterial multidrug resistance is a serious clinical problem and is commonly conferred by tripartite efflux 'pumps' in the prokaryotic cell envelope. Crystal structures of the three components of a drug efflux pump have now been solved: the outer membrane TolC exit duct in the year 2000, the inner membrane AcrB antiporter in 2002 and the periplasmic adaptor MexA in 2004. These structures have enhanced our understanding of the principles underlying pump assembly and operation, and present pumps as new drug targets.  相似文献   
958.
The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.  相似文献   
959.
AvrRpt2, an effector protein from Pseudomonas syringae pv. tomato (Pst), behaves as an avirulence factor that activates resistance in Arabidopsis thaliana lines expressing the resistance gene RPS2. AvrRpt2 can also enhance pathogen fitness by promoting the ability of the bacteria to grow and to cause disease on susceptible lines of A. thaliana that lack functional RPS2. The activation of RPS2 is coupled to the AvrRpt2-induced disappearance of the A. thaliana RIN4 protein. However, the significance of this RIN4 elimination to AvrRpt2 virulence function is unresolved. To clarify our understanding of the contribution of RIN4 disappearance to AvrRpt2 virulence function, we generated new avrRpt2 alleles by random mutagenesis. We show that the ability of six novel AvrRpt2 mutants to induce RIN4 disappearance correlated well with their avirulence activities but not with their virulence activities. Moreover, the virulence activity of wild-type AvrRpt2 was detectable in an A. thaliana line lacking RIN4. Collectively, these results indicate that the virulence activity of AvrRpt2 in A. thaliana is likely to rely on the modification of host susceptibility factors other than, or in addition to, RIN4.  相似文献   
960.
The central importance of protein phosphorylation in plant defense responses has been demonstrated by the isolation of several disease-resistance genes that encode protein kinases. In addition, there are many reports of changes in protein phosphorylation accompanying plant responses to pathogens. In contrast, little is known about the role of protein dephosphorylation in regulating plant defenses. We report that expression of the LePP2Ac1 gene, which encodes a catalytic subunit of the heterotrimeric protein phosphatase 2A (PP2Ac), is rapidly induced in resistant tomato leaves upon inoculation with an avirulent strain of Pseudomonas syringae pv. tomato. By analysis of PP2Ac gene sequences from several plant species, we found that PP2Ac genes cluster into two subfamilies, with LePP2Ac1 belonging to subfamily I. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana was used to suppress expression of genes from subfamily I and not from subfamily II. The PP2Ac-silenced plants had greatly decreased PP2A activity, constitutively expressed pathogenesis-related (PR) genes, and developed localized cell death in stems and leaves. In addition, the plants were more resistant to a virulent strain of P. syringae pv. tabaci and showed an accelerated hypersensitive response (HR) to effector proteins from both P. syringae and the fungal pathogen, Cladosporium fulvum. Thus, catalytic subunits of PP2Ac subfamily I act as negative regulators of plant defense responses likely by de-sensitizing protein phosphorylation cascades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号