全文获取类型
收费全文 | 6348篇 |
免费 | 824篇 |
国内免费 | 606篇 |
专业分类
7778篇 |
出版年
2024年 | 34篇 |
2023年 | 146篇 |
2022年 | 153篇 |
2021年 | 199篇 |
2020年 | 244篇 |
2019年 | 294篇 |
2018年 | 288篇 |
2017年 | 277篇 |
2016年 | 276篇 |
2015年 | 236篇 |
2014年 | 307篇 |
2013年 | 586篇 |
2012年 | 209篇 |
2011年 | 304篇 |
2010年 | 220篇 |
2009年 | 342篇 |
2008年 | 324篇 |
2007年 | 321篇 |
2006年 | 328篇 |
2005年 | 301篇 |
2004年 | 261篇 |
2003年 | 268篇 |
2002年 | 246篇 |
2001年 | 185篇 |
2000年 | 115篇 |
1999年 | 159篇 |
1998年 | 137篇 |
1997年 | 124篇 |
1996年 | 106篇 |
1995年 | 101篇 |
1994年 | 89篇 |
1993年 | 84篇 |
1992年 | 71篇 |
1991年 | 65篇 |
1990年 | 43篇 |
1989年 | 26篇 |
1988年 | 40篇 |
1987年 | 36篇 |
1986年 | 25篇 |
1985年 | 32篇 |
1984年 | 45篇 |
1983年 | 25篇 |
1982年 | 44篇 |
1981年 | 21篇 |
1980年 | 11篇 |
1979年 | 13篇 |
1978年 | 6篇 |
1977年 | 6篇 |
1974年 | 1篇 |
1973年 | 3篇 |
排序方式: 共有7778条查询结果,搜索用时 12 毫秒
41.
Synonymous codon usage and cellular tRNA abundance are thought to be co-evolved in optimizing translational efficiencies in highly expressed genes. Here in this communication by taking the advantage of publicly available gene expression data of rice and Arabidopsis we demonstrated that tRNA gene copy number is not the only driving force favoring translational selection in all highly expressed genes of rice. We found that forces favoring translational selection differ between GC-rich and GC-poor classes of genes. Supporting our results we also showed that, in highly expressed genes of GC-poor class there is a perfect correspondence between majority of preferred codons and tRNA gene copy number that confers translational efficiencies to this group of genes. However, tRNA gene copy number is not fully consistent with models of translational selection in GC-rich group of genes, where constraints on mRNA secondary structure play a role to optimize codon usage in highly expressed genes. 相似文献
42.
In the present work, the stability of crude dextransucrase from Leuconostoc citreum B-742 was evaluated in synthetic and in cashew apple juice culture broth. Optimum stability conditions for dextransucrase
from L. citreum B-742 were different from the reported for its parental industrial strain enzyme (L. mesenteroides B-512F). Crude dextransucrase, from L. citreum B-742, produced using cashew apple juice as substrate, presented higher stability than the crude enzyme produced using synthetic
culture medium, showing the same behavior previously reported for dextransucrase from L. mesenteroides B-512F. The crude enzyme presented good stability in cashew apple juice for 48 h at 25°C and pH 6.5. 相似文献
43.
Sol-gel treatments have been performed on cotton fabrics in order to promote the formation of a surface silica insulating barrier, able to enhance their thermo-oxidative stability and flame retardancy. In particular, the role of several silica precursors, which differ as far as their structure (number and type of hydrolysable groups, presence of aromatic rings) is concerned, has been thoroughly investigated. The level of silica distribution and dispersion on and within the fabrics was found to depend on the type of precursor employed, as revealed by scanning electron microscopy and elemental analysis. All the precursors were able to favour the char formation in air below 360 °C, as stated by thermogravimetric analysis: in particular, the highest thermal stability was achieved in the presence of precursors bearing aromatic rings. Indeed, both flammability resistance and combustion behaviour of the treated fabrics were remarkably enhanced. 相似文献
44.
45.
Fernanda P. Werneck Cristiano Nogueira Guarino R. Colli Jack W. Sites Jr Gabriel C. Costa 《Journal of Biogeography》2012,39(9):1695-1706
Aim To investigate the historical distribution of the Cerrado across Quaternary climatic fluctuations and to generate historical stability maps to test: (1) whether the ‘historical climate’ stability hypothesis explains squamate reptile richness in the Cerrado; and (2) the hypothesis of Pleistocene connections between savannas located north and south of Amazonia. Location The Cerrado, a savanna biome and a global biodiversity hotspot distributed mainly in central Brazil. Methods We generated occurrence datasets from 1000 presence points randomly selected from the entire distribution of the Cerrado, as determined by two spatial definitions. We modelled the potential Cerrado distribution by implementing a maximum‐entropy machine‐learning algorithm across four time projections: current, mid‐Holocene (6 ka), Last Glacial Maximum (LGM, 21 ka) and Last Interglacial (LIG, 120 ka). We generated historical stability maps (refugial areas) by overlapping presence/absence projections of all scenarios, and checked consistencies with qualitative comparisons with available fossil pollen records. We built a spatially explicit simultaneous autoregressive model to explore the relationship between current climate, climatic stability, and squamate species richness. Results Models predicted the LGM and LIG as the periods of narrowest and widest Cerrado distributions, respectively, and were largely corroborated by palynological evidence. We found evidence for two savanna corridors (eastern coastal during the LIG, and Andean during the LGM) and predicted a large refugial area in the north‐eastern Cerrado (Serra Geral de Goiás refugium). Variables related to climatic stability predicted squamate richness better than present climatic variables did. Main conclusions Our results indicate that Bolivian savannas should be included within the Cerrado range and that the Cerrado’s biogeographical counterparts are not Chaco and Caatinga but rather the disjunct savannas of the Guyana shield plateaus. Climatic stability is a good predictor of Cerrado squamate richness, and our stability maps could be used in future studies to test diversity patterns and genetic signatures of different taxonomic groups and as a higher‐order landscape biodiversity surrogate for conservation planning. 相似文献
46.
Identification of new potential inhibitors against Hedgehog pathway activator protein Smoothened (SMO) is considered to be of higher importance to improvise the future cancer therapeutics. Different SMO inhibitors/drugs (e.g. Cyclopamine, Vismodegib, Taladegib) used till date are found to be associated with several drug-related resistivity and toxicity. To explore the ability of new drug/inhibitor molecules, which can show better/similar binding and dynamic stability as compared to known inhibitors, virtual screening against SMO is performed followed by the comparative docking and molecular dynamic studies. ‘ZINC12368305’ is found to be the best molecule among the entire data-set, as it shows the highest binding affinity and stable conformations. Here, an integrative approach using Dynamic Graph Theory is introduced to gain the molecular insights of the structural integrity of these protein complexes at the residue level by analyzing the corresponding Protein Contact Networks along the Molecular Dynamics trajectories. The study further focuses to understand the detailed binding mechanisms of available inhibitor/drug molecules along with the newly predicted molecule. It is observed that a unique big cluster of low fluctuating residues at the vicinity of the drug binding pocket of the SMO in ZINC12368305-bound complex is present and driving it toward a more stable region. A close inspection on this site reveals the presence of a stable Pi–Pi interaction between the pyrazole group-associated phenanthrene ring of ZINC12368305 and aromatic ring of Phe484 of SMO, which could be the potential factor of ZINC12368305 to create a more stable complex with SMO as compared to the other inhibitors. 相似文献
47.
Hydrophobic substitutions at solvent-exposed positions in two alpha-helical regions of the bacteriophage P22 Arc repressor were introduced by combinatorial mutagenesis. In helix A, hydrophobic residues were tolerated individually at each of the five positions examined, but multiple substitutions were poorly tolerated as shown by the finding that mutants with more than two additional hydrophobic residues were biologically inactive. Several inactive helix A variants were purified and found to have reduced thermal stability relative to wild-type Arc, with a rough correlation between the number of polar-to-hydrophobic substitutions and the magnitude of the stability defect. Quite different results were obtained in helix B, where variants with as many as five polar-to-hydrophobic substitutions were found to be biologically active and one variant with three hydrophobic substitutions had a t(m) 6 degrees C higher than wild-type. By contrast, a helix A mutant with three similar polar-to-hydrophobic substitutions was 23 degrees C less stable than wild-type. Also, one set of three polar-to-hydrophobic substitutions in helix B was tolerated when introduced into the wild-type background but not when introduced into an equally active mutant having a nearly identical structure. Context effects occur both when comparing different regions of the same protein and when comparing the same region in two different homologues. 相似文献
48.
The purpose of this study was to investigate the stabilizing action of polyols against various protein degradation mechanisms
(eg, aggregation, deamidation, oxidation), using a model protein lysozyme. Differential scanning calorimeter (DSC) was used
to measure the thermodynamic parameters, mid point transition temperature and calorimetric enthalpy, in order to evaluate
conformational stability. Enzyme activity assay was used to corroborate the DSC results. Mannitol, sucrose, lactose, glycerol,
and propylene glycol were used as polyols to stabilize lysozyme against aggregation, deamidation, and oxidation. Mannitol
was found to stabilize lysozyme against aggregation, sucrose against deamidation both at neutral pH and at acidic pH, and
lactose against oxidation. Stabilizers that provided greater conformational stability of lysozyme against various degradation
mechanisms also protected specific enzyme activity to a greater extent. It was concluded that DSC and bioassay could be valuable
tools for screening stabilizers in protein formulations. 相似文献
49.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type. 相似文献
50.
Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
Biotechnology applications of horseradish peroxidase (HRP) would benefit from access to tailor-made variants with greater specific activity, lower K(m) for peroxide, and higher thermostability. Starting with a mutant that is functionally expressed in Saccharomyces cerevisiae, we used random mutagenesis, recombination, and screening to identify HRP-C mutants that are more active and stable to incubation in hydrogen peroxide at 50 degrees C. A single mutation (N175S) in the HRP active site was found to improve thermal stability. Introducing this mutation into an HRP variant evolved for higher activity yielded HRP 13A7-N175S, whose half-life at 60 degrees C and pH 7.0 is three times that of wild-type (recombinant) HRP and a commercially available HRP preparation from Sigma (St. Louis, MO). The variant is also more stable in the presence of H(2)O(2), SDS, salts (NaCl and urea), and at different pH values. Furthermore, this variant is more active towards a variety of small organic substrates frequently used in diagnostic applications. Site-directed mutagenesis to replace each of the four methionine residues in HRP (M83, M181, M281, M284) with isoleucine revealed no mutation that significantly increased the enzyme's stability to hydrogen peroxide. 相似文献