首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   187篇
  国内免费   214篇
  2024年   8篇
  2023年   47篇
  2022年   36篇
  2021年   48篇
  2020年   63篇
  2019年   73篇
  2018年   64篇
  2017年   66篇
  2016年   66篇
  2015年   62篇
  2014年   60篇
  2013年   85篇
  2012年   49篇
  2011年   41篇
  2010年   50篇
  2009年   61篇
  2008年   50篇
  2007年   48篇
  2006年   52篇
  2005年   45篇
  2004年   21篇
  2003年   31篇
  2002年   32篇
  2001年   31篇
  2000年   17篇
  1999年   17篇
  1998年   17篇
  1997年   15篇
  1996年   14篇
  1995年   8篇
  1994年   10篇
  1993年   13篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   10篇
  1983年   5篇
  1982年   6篇
  1981年   11篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1973年   2篇
排序方式: 共有1405条查询结果,搜索用时 62 毫秒
31.
32.
33.
The impacts of climate change have re‐energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range‐limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors—climate heterogeneity, collinearity among climate variables, and spatial scale—interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.  相似文献   
34.
35.
Janzen's seasonality hypothesis predicts that organisms inhabiting environments with limited climatic variability will evolve a reduced thermal tolerance breadth compared with organisms experiencing greater climatic variability. In turn, narrow tolerance breadth may select against dispersal across strong temperature gradients, such as those found across elevation. This can result in narrow elevational ranges and generate a pattern of isolation by environment or neutral genetic differentiation correlated with environmental variables that are independent of geographic distance. We tested for signatures of isolation by environment across elevation using genome‐wide SNP data from five species of Andean dung beetles (subfamily Scarabaeinae) with well‐characterized, narrow thermal physiologies, and narrow elevational distributions. Contrary to our expectations, we found no evidence of population genetic structure associated with elevation and little signal of isolation by environment. Further, elevational ranges for four of five species appear to be at equilibrium and show no decay of genetic diversity at range limits. Taken together, these results suggest physiological constraints on dispersal may primarily operate outside of a stable realized niche and point to a lower bound on the spatial scale of local adaptation.  相似文献   
36.
Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 Branchiostoma individuals by whole‐genome resequencing strategy. We detected over 140 million genomic variations for each Branchiostoma individual. In particular, we applied the pairwise sequentially Markovian coalescent (PSMC) method to estimate the trajectories of changes in the effective population size (Ne) of Branchiostoma population during the Pleistocene. We evaluated the threshold of sequencing depth for proper inference of demographic histories using PSMC was ≥25×. The PSMC results highlight the role of historical global climatic fluctuations in the long‐term population dynamics of Branchiostoma. The inferred ancestral Ne of the Branchiostoma belcheri populations from Zhanjiang and Xiamen (China) seawaters was different in amplitude before the first (mutation rate = 3 × 10?9) or third glaciation (mutation rate = 9 × 10?9) of the Pleistocene, indicating that the two populations most probably started to evolve in isolation in their respective seas after the first or third glaciation of the Pleistocene. A pronounced population bottleneck coinciding with the last glacial maximum was observed in all Branchiostoma individuals, followed by a population expansion occurred during the late Pleistocene. Species that have experienced long‐term declines may be especially vulnerable to recent anthropogenic activities. Recently, the industrial pollution and the exploitation of sea sand have destroyed the harmonious living environment of amphioxus species. In the future, we need to protect the habitat of Branchiostoma and make full use of these detected genetic variations to facilitate the functional study of Branchiostoma for adaptation to local environments.  相似文献   
37.
Periodic climatic oscillations and species dispersal during the postglacial period are two important causes of plant assemblage and distribution on the Qinghai‐Tibet Plateau (QTP). To improve our understanding of the bio‐geological histories of shrub communities on the QTP, we tested two hypotheses. First, the intensity of climatic oscillations played a filtering role during community structuring. Second, species dispersal during the postglacial period contributed to the recovery of species and phylogenetic diversity and the emergence of phylogenetic overdispersion. To test these hypotheses, we investigated and compared the shrub communities in the alpine and desert habitats of the northeastern QTP. Notably, we observed higher levels of species and phylogenetic diversity in the alpine habitat than in the desert habitat, leading to phylogenetic overdispersion in the alpine shrub communities versus phylogenetic clustering in the desert shrub communities. This phylogenetic overdispersion increased with greater climate anomalies. These results suggest that (a) although climate anomalies strongly affect shrub communities, these phenomena do not act as a filter for shrub community structuring, and (b) species dispersal increases phylogenetic diversity and overdispersion in a community. Moreover, our investigation of the phylogenetic community composition revealed a larger number of plant clades in the alpine shrub communities than in the desert shrub communities, which provided insights into plant clade‐level differences in the phylogenetic structures of alpine and desert shrub communities in the northeastern QTP.  相似文献   
38.
We investigate the phylogeographic structure of a fossorial forest‐living snake species, the forest thread snake, Leptotyphlopssylvicolus Broadley & Wallach, 1997 by sampling specimens from the Eastern Cape and KwaZulu‐Natal provinces of South Africa. Phylogenetic results, using Bayesian inferences and maximum likelihood, from the combined mitochondrial sequence data (cyt b and ND4), along with population genetic analyses suggest the presence of phylogeographic breaks broadly congruent to those exhibited by other forest‐living taxa. Divergence‐time estimates indicate that cladogenesis within the study taxon occurred during the late Miocene climatic shifts, suggesting that cladogenesis was driven by habitat fragmentation. We further investigate the species‐level divergence within L. sylvicolus by including two partial nuclear loci (PRLR and RAG1). The three species delimitation methods (ABGD, bGMYC, and STACEY), retrieved 10–12 putative species nested within the L. sylvicolus species complex. These results were corroborated by iBPP implementing molecular and morphological data in an integrative Bayesian framework. The morphological analyses exhibit large overlap among putative species but indicate differences between grassland and forest species. Due to the narrow distributions of these putative species, the results of the present study have further implications for the conservation status of the L. sylvicolus species complex and suggest that forest and grassland habitats along the east coast of South Africa may harbor significantly higher levels of diversity than currently recognized.  相似文献   
39.
40.
包光  刘治野  刘娜  吴买利 《应用生态学报》2021,32(10):3448-3458
利用Vaganov-Shashkin模型对呼伦贝尔地区4个样点的沙地樟子松标准化宽度年表进行模拟研究,在2000年以前时段拟合度较好,而2000年以后时段拟合度较差。进而选取2000年以前的模拟结果进行径向生长过程分析。结果表明: 呼伦贝尔沙地樟子松主要的生长季为每年的5—9月,温度对每年樟子松生长初期与末期具有显著影响,而在树木生长季旺盛期,土壤湿度的不足是制约树木生长的主要因素。极端窄年树木径向生长速率受土壤湿度的影响较极端宽年明显,生长季中期7—8月树木径向生长速率在宽窄年份均呈降低趋势,表明该时期沙地樟子松生长均受到不同程度的干旱胁迫。研究结果与我国半干旱地区树木年轮生理模型分析特征相符,模型对呼伦贝尔沙地樟子松径向生长模拟具有一定的适用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号