首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   810篇
  免费   197篇
  国内免费   214篇
  2024年   12篇
  2023年   57篇
  2022年   41篇
  2021年   48篇
  2020年   65篇
  2019年   75篇
  2018年   65篇
  2017年   69篇
  2016年   68篇
  2015年   51篇
  2014年   58篇
  2013年   87篇
  2012年   45篇
  2011年   38篇
  2010年   44篇
  2009年   47篇
  2008年   34篇
  2007年   39篇
  2006年   42篇
  2005年   30篇
  2004年   15篇
  2003年   21篇
  2002年   22篇
  2001年   21篇
  2000年   15篇
  1999年   13篇
  1998年   11篇
  1997年   12篇
  1996年   11篇
  1995年   2篇
  1994年   7篇
  1993年   10篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有1221条查询结果,搜索用时 31 毫秒
31.
We investigate the phylogeographic structure of a fossorial forest‐living snake species, the forest thread snake, Leptotyphlopssylvicolus Broadley & Wallach, 1997 by sampling specimens from the Eastern Cape and KwaZulu‐Natal provinces of South Africa. Phylogenetic results, using Bayesian inferences and maximum likelihood, from the combined mitochondrial sequence data (cyt b and ND4), along with population genetic analyses suggest the presence of phylogeographic breaks broadly congruent to those exhibited by other forest‐living taxa. Divergence‐time estimates indicate that cladogenesis within the study taxon occurred during the late Miocene climatic shifts, suggesting that cladogenesis was driven by habitat fragmentation. We further investigate the species‐level divergence within L. sylvicolus by including two partial nuclear loci (PRLR and RAG1). The three species delimitation methods (ABGD, bGMYC, and STACEY), retrieved 10–12 putative species nested within the L. sylvicolus species complex. These results were corroborated by iBPP implementing molecular and morphological data in an integrative Bayesian framework. The morphological analyses exhibit large overlap among putative species but indicate differences between grassland and forest species. Due to the narrow distributions of these putative species, the results of the present study have further implications for the conservation status of the L. sylvicolus species complex and suggest that forest and grassland habitats along the east coast of South Africa may harbor significantly higher levels of diversity than currently recognized.  相似文献   
32.
33.
包光  刘治野  刘娜  吴买利 《应用生态学报》2021,32(10):3448-3458
利用Vaganov-Shashkin模型对呼伦贝尔地区4个样点的沙地樟子松标准化宽度年表进行模拟研究,在2000年以前时段拟合度较好,而2000年以后时段拟合度较差。进而选取2000年以前的模拟结果进行径向生长过程分析。结果表明: 呼伦贝尔沙地樟子松主要的生长季为每年的5—9月,温度对每年樟子松生长初期与末期具有显著影响,而在树木生长季旺盛期,土壤湿度的不足是制约树木生长的主要因素。极端窄年树木径向生长速率受土壤湿度的影响较极端宽年明显,生长季中期7—8月树木径向生长速率在宽窄年份均呈降低趋势,表明该时期沙地樟子松生长均受到不同程度的干旱胁迫。研究结果与我国半干旱地区树木年轮生理模型分析特征相符,模型对呼伦贝尔沙地樟子松径向生长模拟具有一定的适用性。  相似文献   
34.
水分和磷调控的澳大利亚桉树林林下植物群落组合对二氧化碳浓度升高的响应 鉴于林下植物群落具有的关键性功能作用和全球范围内巨大的森林覆盖面积,研究林下群落对 CO2浓度升高(eCO2)的响应以及土壤资源在这些响应中的作用,对于了解CO2浓度升高对森林生态系统造成的影响非常重要。本研究评估了在澳大利亚东部磷有限的桉树林林下群落中,两种限制性的资源(即水分和磷)在发芽、物候、覆盖率、群落组成和叶片性状等方面对eCO2响应的作用。我们收集了含有当地土壤种子库的土壤,在温室条件下种植实验性的林下植物群落。研究结果表明,添加磷提高了植物的总体覆盖率,特别是在生长期的最初4 周以及水分含量高的条件下,而且该响应是由植物群落中的类禾本科植物所驱动。然而,随着实验的进行,不同处理方法之间的差异逐渐减小,所有处理在大约11周后均达到了80%左右的植物覆盖率。相反,植物覆盖率并未受到eCO2 的影响。多元分析结果反映出植物群落组成随时间的变化,盆栽从以裸土为主变为以高覆盖率的多样化群落为主。但是在实验过程中,磷的添加以及水分可利用性和CO2之间的相互作用都对植物群落随时间的变化轨迹有所影响。CO2浓度的升高也增加了群落水平的比叶面积,这表明植物群落对eCO2的功能适应可能发生在成分响应开始之前。鉴于我们用种子库培育的林下群落对eCO2 的响应随着时间的推移而有 所变化,并且受到与磷和水分可利用性的相互作用的调节。我们的结果表明,在水分含量有限的系统中, 特别是在土壤养分可利用性低所导致的生产力响应受限的情况下,CO2浓度的升高在塑造植物群落方面作用有限。  相似文献   
35.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   
36.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
37.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
38.
Rates of climatic niche evolution vary widely across the tree of life and are strongly associated with rates of diversification among clades. However, why the climatic niche evolves more rapidly in some clades than others remains unclear. Variation in life history traits often plays a key role in determining the environmental conditions under which species can survive, and therefore, could impact the rate at which lineages can expand in available climatic niche space. Here, we explore the relationships among life-history variation, climatic niche breadth, and rates of climatic niche evolution. We reconstruct a phylogeny for the genus Desmognathus, an adaptive radiation of salamanders distributed across eastern North America, based on nuclear and mitochondrial genes. Using this phylogeny, we estimate rates of climatic niche evolution for species with long, short, and no aquatic larval stage. Rates of climatic niche evolution are unrelated to the mean climatic niche breadth of species with different life histories. Instead, we find that the evolution of a short larval period promotes greater exploration of climatic space, leading to increased rates of climatic niche evolution across species having this trait. We propose that morphological and physiological differences associated with variation in larval stage length underlie the heterogeneous ability of lineages to explore climatic niche space. Rapid rates of climatic niche evolution among species with short larval periods were an important dimension of the clade's adaptive radiation and likely contributed to the rapid rate of lineage accumulation following the evolution of an aquatic life history in this clade. Our results show how variation in a key life-history trait can constrain or promote divergence of the climatic niche, leading to variation in rates of climatic niche evolution among species.  相似文献   
39.
This study aimed to analyze individual cortisol levels in relation to work conditions, sleep, and health parameters among truck drivers working day shifts (n?=?21) compared to those working irregular shifts (n?=?21). A total of 42 male truck drivers (39.8?±?6.2 yrs) completed questionnaires about sociodemographics, job content, work environment, health, and lifestyle. Rest-activity profiles were measured using actigraphy, and cardiovascular blood parameters were collected. Salivary cortisol samples were obtained: (i) at waking time, (ii) 30?min after waking, and (iii) at bedtime, during both one workday and one day off from work. Irregular-shift workers, compared to day-shift workers, showed significantly higher waist-hip ratio, very-low-density lipoprotein (VLDL) cholesterol, tiredness after work, years working as a driver, truck vibration, and less job demand (p?<?.05). High cortisol levels in irregular-shift workers were correlated with certain stressors, such as short sleep duration and low job satisfaction, and to metabolic parameters, such as total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), VLDL, and triglycerides. Day-shift workers had higher cortisol levels collected 30?min after waking (p?=?.03) and a higher cortisol awakening response (CAR; p?=?.02) during workdays compared to off days. Irregular-shift workers had higher cortisol levels on their off days compared to day-shift workers (p?=?.03). In conclusion, for the day-shift workers, a higher cortisol response was observed on workdays compared to off days. Although no direct comparisons could be made between groups for work days, on off days the irregular-shift workers had higher cortisol levels compared to day-shift workers, suggesting a prolonged stress response in the irregular-shift group. In addition, cortisol levels were correlated with stressors and metabolic parameters. Future studies are warranted to investigate further stress responses in the context of irregular work hours. (Author correspondence: )  相似文献   
40.
Truck drivers are more likely to suffer severe injury and death due to certain truck driving characteristics. Identifying and preventing factors associated with accidents in this population is important to minimize damage and improve road safety. Excessive daytime sleepiness is a major public health problem, leading to impaired cognitive function, reduced alertness, and increased risk of motor vehicle crashes. The aim of this cross‐sectional study was to determine the prevalence and predictors of hypersomnolence (defined as an Epworth Sleepiness Scale score greater than 10) among truck drivers. Three hundred male truck drivers were studied. Quality of sleep was assessed by the Pittsburgh Sleep Quality Index, and the association between demographic, clinical, and occupational data with excessive sleepiness was analyzed. The mean daily sleep duration was 5.6±1.3 h, and poor quality of sleep was found in 46.3% of the individuals. Hypersomnolence was found in 46% of the drivers and was associated with younger age, snoring, and working >10 h without rest. A positive correlation between hypersomnolence and previous accidents was detected (p=0.005). These results show that sleep deprivation and hypersomnolence are frequent among truck drivers. The treatment of sleep‐disordered breathing and the implementation of educational programs, particularly targeting younger drivers and promoting increased awareness of the deleterious effects of sleep loss and work overload, may help to reduce hypersomnolence and accidents among truck drivers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号