首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7395篇
  免费   1954篇
  国内免费   1127篇
  2024年   61篇
  2023年   494篇
  2022年   269篇
  2021年   366篇
  2020年   722篇
  2019年   726篇
  2018年   661篇
  2017年   650篇
  2016年   593篇
  2015年   611篇
  2014年   559篇
  2013年   626篇
  2012年   492篇
  2011年   442篇
  2010年   387篇
  2009年   444篇
  2008年   387篇
  2007年   299篇
  2006年   245篇
  2005年   219篇
  2004年   205篇
  2003年   135篇
  2002年   145篇
  2001年   119篇
  2000年   139篇
  1999年   83篇
  1998年   68篇
  1997年   61篇
  1996年   44篇
  1995年   41篇
  1994年   32篇
  1993年   36篇
  1992年   17篇
  1991年   23篇
  1990年   11篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   11篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human-induced changes. Understanding how climate-mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8-year dataset (2013–2020), we show that inter-annual humpback whale pregnancy rates, as determined from skin-blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter-annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.  相似文献   
62.
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.  相似文献   
63.
Trees at their upper range limits are highly sensitive to climate change, and thus alpine treelines worldwide have changed their recruitment patterns in response to climate warming. However, previous studies focused only on daily mean temperature, neglecting the asymmetric influences of daytime and nighttime warming on recruitments in alpine treelines. Here, based on the compiled dataset of tree recruitment series from 172 alpine treelines across the Northern Hemisphere, we quantified and compared the different effects of daytime and nighttime warming on treeline recruitment using four indices of temperature sensitivity, and assessed the responses of treeline recruitment to warming-induced drought stress. Our analyses demonstrated that even in different environmental regions, both daytime and nighttime warming could significantly promote treeline recruitment, and however, treeline recruitment was much more sensitive to nighttime warming than to daytime warming, which could be attributable to the presence of drought stress. The increasing drought stress primarily driven by daytime warming rather than by nighttime warming would likely constrain the responses of treeline recruitment to daytime warming. Our findings provided compelling evidence that nighttime warming rather than daytime warming could play a primary role in promoting the recruitment in alpine treelines, which was related to the daytime warming-induced drought stress. Thus, daytime and nighttime warming should be considered separately to improve future projections of global change impacts across alpine ecosystems.  相似文献   
64.
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.  相似文献   
65.
It is often suggested that gelatinous zooplankton may benefit from anthropogenic pressures of all kinds and in particular from climate change. Large pelagic tunicates, for example, are likely to be favored over other types of macrozooplankton due to their filter-feeding mode, which gives them access to small preys thought to be less affected by climate change than larger preys. In this study, we provide model-based estimate of potential community changes in macrozooplankton composition and estimate for the first time their effects on benthic food supply and on the ocean carbon cycle under two 21st-century climate-change scenarios. Forced with output from an Earth System Model climate projections, our ocean biogeochemical model simulates a large reduction in macrozooplankton biomass in response to anthropogenic climate change, but shows that gelatinous macrozooplankton are less affected than nongelatinous macrozooplankton, with global biomass declines estimated at −2.8% and −3.5%, respectively, for every 1°C of warming. The inclusion of gelatinous macrozooplankon in our ocean biogeochemical model has a limited effect on anthropogenic carbon uptake in the 21st century, but impacts the projected decline in particulate organic matter fluxes in the deep ocean. In subtropical oligotrophic gyres, where gelatinous zooplankton dominate macrozooplankton, the decline in the amount of organic matter reaching the seafloor is reduced by a factor of 2 when gelatinous macrozooplankton are considered (−17.5% vs. −29.7% when gelatinous macrozooplankton are not considered, all for 2100 under RCP8.5). The shift to gelatinous macrozooplankton in the future ocean therefore buffers the decline in deep carbon fluxes and should be taken into account when assessing potential changes in deep carbon storage and the risks that deep ecosystems may face when confronted with a decline in their food source.  相似文献   
66.
Globally, climate is changing rapidly, which causes shifts in many species' distributions, stressing the need to understand their response to changing environmental conditions to inform conservation and management. Northern latitudes are expected to experience strongest changes in climate, with milder winters and decreasing snow cover. The wolverine (Gulo gulo) is a circumpolar, threatened carnivore distributed in northern tundra, boreal, and subboreal habitats. Previous studies have suggested that wolverine distribution and reproduction are constrained by a strong association with persistent spring snow cover. We assess this hypothesis by relating spatial distribution of 1589 reproductive events, a fitness-related proxy for female reproduction and survival, to snow cover over two decades. Wolverine distribution has increased and number of reproductive events increased 20 times in areas lacking spring snow cover during our study period, despite low monitoring effort where snow is sparse. Thus, the relationship between reproductive events and persistent spring snow cover weakened during this period. These findings show that wolverine reproductive success and hence distribution are less dependent on spring snow cover than expected. This has important implications for projections of future habitat availability, and thus distribution, of this threatened species. Our study also illustrates how past persecution, or other factors, that have restricted species distribution to remote areas can mask actual effects of environmental parameters, whose importance reveals when populations expand beyond previously restricted ranges. Overwhelming evidence shows that climate change is affecting many species and ecological processes, but forecasting potential consequences on a given species requires longitudinal data to revisit hypotheses and reassess the direction and magnitude of climate effects with new data. This is especially important for conservation-oriented management of species inhabiting dynamic systems where environmental factors and human activities interact, a common scenario for many species in different ecosystems around the globe.  相似文献   
67.
Mineralization of dissolved organic matter (DOM) in thermokarst lakes plays a non-negligible role in the permafrost carbon (C) cycle, but remains poorly understood due to its complex interactions with external C and nutrient inputs (i.e., aquatic priming and nutrient effects). Based on large-scale lake sampling and laboratory incubations, in combination with 13C-stable-isotope labeling, optical spectroscopy, and high-throughput sequencing, we examined large-scale patterns and dominant drivers of priming and nutrient effects of DOM biodegradation across 30 thermokarst lakes along a 1100-km transect on the Tibetan Plateau. We observed that labile C and phosphorus (P) rather than nitrogen (N) inputs stimulated DOM biodegradation, with the priming and P effects being 172% and 451% over unamended control, respectively. We also detected significant interactive effects of labile C and nutrient supply on DOM biodegradation, with the combined labile C and nutrient additions inducing stronger microbial mineralization than C or nutrient treatment alone, illustrating that microbial activity in alpine thermokarst lakes is co-limited by both C and nutrients. We further found that the aquatic priming was mainly driven by DOM quality, with the priming intensity increasing with DOM recalcitrance, reflecting the limitation of external C as energy sources for microbial activity. Greater priming intensity was also associated with higher community-level ribosomal RNA gene operon (rrn) copy number and bacterial diversity as well as increased background soluble reactive P concentration. In contrast, the P effect decreased with DOM recalcitrance as well as with background soluble reactive P and ammonium concentrations, revealing the declining importance of P availability in mediating DOM biodegradation with enhanced C limitation but reduced nutrient limitation. Overall, the stimulation of external C and P inputs on DOM biodegradation in thermokarst lakes would amplify C-climate feedback in this alpine permafrost region.  相似文献   
68.

Aim

Climate change is affecting the distribution of species and subsequent biotic interactions, including hybridization potential. The imperiled Golden-winged Warbler (GWWA) competes and hybridizes with the Blue-winged Warbler (BWWA), which may threaten the persistence of GWWA due to introgression. We examined how climate change is likely to alter the breeding distributions and potential for hybridization between GWWA and BWWA.

Location

North America.

Methods

We used GWWA and BWWA occurrence data to model climatically suitable conditions under historical and future climate scenarios. Models were parameterized with 13 bioclimatic variables and 3 topographic variables. Using ensemble modeling, we estimated historical and modern distributions, as well as a projected distribution under six future climate scenarios. We quantified breeding distribution area, the position of and amount of overlap between GWWA and BWWA distributions under each climate scenario. We summarized the top explanatory variables in our model to predict environmental parameters of the distributions under future climate scenarios relative to historical climate.

Results

GWWA and BWWA distributions are projected to substantially change under future climate scenarios. GWWA are projected to undergo the greatest change; the area of climatically suitable breeding season conditions is expected to shift north to northwest; and range contraction is predicted in five out of six future climate scenarios. Climatically suitable conditions for BWWA decreased in four of the six future climate scenarios, while the distribution is projected to shift east. A reduction in overlapping distributions for GWWA and BWWA is projected under all six future climate scenarios.

Main Conclusions

Climate change is expected to substantially alter the area of climatically suitable conditions for GWWA and BWWA, with the southern portion of the current breeding ranges likely to become climatically unsuitable. However, interactions between BWWA and GWWA are expected to decline with the decrease in overlapping habitat, which may reduce the risk of genetic introgression.  相似文献   
69.

Aim

Understanding how species' traits and environmental contexts relate to extinction risk is a critical priority for ecology and conservation biology. This study aims to identify and explore factors related to extinction risk between herbaceous and woody angiosperms to facilitate more effective conservation and management strategies and understand the interactions between environmental threats and species' traits.

Location

China.

Taxon

Angiosperms.

Methods

We obtained a large dataset including five traits, six extrinsic variables, and 796,118 occurrence records for 14,888 Chinese angiosperms. We assessed the phylogenetic signal and used phylogenetic generalized least squares regressions to explore relationships between extinction risk, plant traits, and extrinsic variables in woody and herbaceous angiosperms. We also used phylogenetic path analysis to evaluate causal relationships among traits, climate variables, and extinction risk of different growth forms.

Results

The phylogenetic signal of extinction risk differed among woody and herbaceous species. Angiosperm extinction risk was mainly affected by growth form, altitude, mean annual temperature, normalized difference vegetation index, and precipitation change from 1901 to 2020. Woody species' extinction risk was strongly affected by height and precipitation, whereas extinction risk for herbaceous species was mainly affected by mean annual temperature rather than plant traits.

Main conclusions

Woody species were more likely to have higher extinction risks than herbaceous species under climate change and extinction threat levels varied with both plant traits and extrinsic variables. The relationships we uncovered may help identify and protect threatened plant species and the ecosystems that rely on them.  相似文献   
70.
Microsites are created by abiotic and biotic features of the landscape and may provide essential habitats for the persistence of biota. Forest canopies and understorey plants may moderate wind and solar radiation to create microclimatic conditions that differ considerably from regional climates. Skirt-forming plants, where senescent leaves create hut-like cavities around the stem, create microsites that are sheltered from ambient conditions and extreme weather events, constituting potential refuges for wildlife. We investigate day and night temperatures and humidity for four locations (grass tree cavities, soil, 20 cm above-ground, 1 m above-ground) in a South Australian forest with relatively open canopy of stringybark eucalypts (Eucalyptus baxteri, E. obliqua) and an understorey of skirt-forming grass trees (Xanthorrhoea semiplana) at 5, 10, 20, and 40 m from the forest edge. We also measured the percentage of canopy and understorey covers. Generally, temperature and humidity differed significantly between more sheltered (grass tree cavities, soil) and open-air microsites, with the former being cooler during the day and warmer and more humid during the night. Furthermore, our results suggest that canopy cover tends to decrease, and understorey cover tends to increase, the temperature of microsites. Distance to the edge was not significantly related to temperature for any microsite, suggesting that the edge effect did not extend beyond 10 m from the edge. Overall, grass trees influenced microclimatic conditions by forming a dense understorey and providing cavities that are relatively insulated. The capacity of grass tree cavities to buffer external conditions increased linearly with ambient temperatures, by 0.46°C per degree increase in maximum and 0.25°C per degree decrease in minimum temperatures, potentially offsetting climate warming and enabling persistence of fauna within their thermal limits. These climate moderation properties will make grass trees increasingly important refuges as extreme weather events become more common under anthropogenic climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号