首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7396篇
  免费   1954篇
  国内免费   1135篇
  10485篇
  2024年   69篇
  2023年   495篇
  2022年   269篇
  2021年   366篇
  2020年   722篇
  2019年   726篇
  2018年   661篇
  2017年   650篇
  2016年   593篇
  2015年   611篇
  2014年   559篇
  2013年   626篇
  2012年   492篇
  2011年   442篇
  2010年   387篇
  2009年   444篇
  2008年   387篇
  2007年   299篇
  2006年   245篇
  2005年   219篇
  2004年   205篇
  2003年   135篇
  2002年   145篇
  2001年   119篇
  2000年   139篇
  1999年   83篇
  1998年   68篇
  1997年   61篇
  1996年   44篇
  1995年   41篇
  1994年   32篇
  1993年   36篇
  1992年   17篇
  1991年   23篇
  1990年   11篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   11篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
We present a global assessment of the relationships between the short‐wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle‐leaf forests (ENF); evergreen broad‐leaf forests (EBF); deciduous needle‐leaf forests (DNF); deciduous broad‐leaf forests (DBF); and mixed‐forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short‐wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad‐leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select ‘pure’ pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.  相似文献   
102.
The influence of capture interval on trap shyness, and temperature, rainfall and drought on capture probability (p) in 827 brown mudfish Neochanna apoda was quantified using mark–recapture models. In particular, it was hypothesized that the loss of trapping memory in marked N. apoda would lead to a capture‐interval threshold required to minimize trap shyness. Neochanna apoda trap shyness approximated a threshold response to capture interval, declining rapidly with increasing capture intervals up to 16·5 days, after which p remained constant. Tests for detecting trap‐dependent capture probability in Cormack–Jolly–Seber models failed to detect trap shyness in N. apoda capture histories with capture intervals averaging 16 days. This confirmed the applicability of the 16 day capture‐interval threshold for mark–recapture studies. Instead, N. apoda p was positively influenced by water temperature and rainfall during capture. These results imply that a threshold capture interval is required to minimize the trade‐off between the competing assumptions of population closure and p homogeneity between capture occasions in closed mark–recapture models. Moreover, environmental factors that influence behaviour could potentially confound abundance indices, and consequently abundance trends should be interpreted with caution in the face of long‐term climate change, such as with global warming.  相似文献   
103.
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.  相似文献   
104.
Current climate change is a major threat to biodiversity. Species unable to adapt or move will face local or global extinction and this is more likely to happen to species with narrow climatic and habitat requirements and limited dispersal abilities, such as amphibians and reptiles. Biodiversity losses are likely to be greatest in global biodiversity hotspots where climate change is fast, such as the Iberian Peninsula. Here we assess the impact of climate change on 37 endemic and nearly endemic herptiles of the Iberian Peninsula by predicting species distributions for three different times into the future (2020, 2050 and 2080) using an ensemble of bioclimatic models and different combinations of species dispersal ability, emission levels and global circulation models. Our results show that species with Atlantic affinities that occur mainly in the North‐western Iberian Peninsula have severely reduced future distributions. Up to 13 species may lose their entire potential distribution by 2080. Furthermore, our analysis indicates that the most critical period for the majority of these species will be the next decade. While there is considerable variability between the scenarios, we believe that our results provide a robust relative evaluation of climate change impacts among different species. Future evaluation of the vulnerability of individual species to climate change should account for their adaptive capacity to climate change, including factors such as physiological climate tolerance, geographical range size, local abundance, life cycle, behavioural and phenological adaptability, evolutionary potential and dispersal ability.  相似文献   
105.
甘肃马铃薯种植布局对区域气候变化的响应   总被引:5,自引:0,他引:5  
基于甘肃省地面气象观测站1961—2008年气象观测资料和马铃薯生长条件,选择最佳小网格推算模型推算出500m×500m的高分辨率的网格序列;确立马铃薯种植适宜性气候区划指标,结合地理信息资料,运用GIS技术,开展马铃薯种植适宜性动态气候区划。结果表明:气候变化使马铃薯最适宜区和适宜区面积分别减小35%和3%,次适宜区和可种植区面积分别扩大18.5%和6.6%,不适宜区面积缩小2.0%。提出了马铃薯应对气候变化建议:各地应根据气候特点,调整作物布局;适当调整播种日期,躲避影响马铃薯产量的春霜冻、块茎形成期的高温危害及伏期干旱等;采取多种农业措施,扩大马铃薯种植面积,提高复种指数。预计随着未来气候进一步变暖,该地区的马铃薯生长发育、产量和结构布局将会继续受到影响,研究成果可为甘肃马铃薯生产以及适应气候变化提供科学参考依据。  相似文献   
106.
为阐明气候变化背景下刺梨(Rosa roxburghii)在中国的潜在适生区分布,该研究基于刺梨的自然分布数据及当代(1960~1990)、未来(21世纪50年代及70年代)气候因子数据,采用最大熵(MaxEnt)模型模拟了当前和未来气候情景下刺梨在中国的潜在适生区,并确定影响其地理分布的主要气候因子.结果表明:(1)...  相似文献   
107.
RHODOLITHS: BETWEEN ROCKS AND SOFT PLACES   总被引:1,自引:0,他引:1  
Rhodoliths (maërl) are widely distributed in the worlds' oceans and have an excellent fossil record. Individuals are slow growing, may be long lived (>100 years), and are resilient to a variety of environmental disturbances. Their external morphology and internal growth bands are potential archives of environmental variation at scales of within years to tens of years. At high densities, these free-living non-geniculate coralline algae form rhodolith beds, communities of high diversity that can be severely impacted by resource extraction.  相似文献   
108.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   
109.
This paper gives a quantitative analysis on the non-CO2 emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO2 emission reduction effect. The research shows that the future non-CO2 emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO2 emissions is a problem as challenging and pressing as that of CO2 emissions.This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO2 emissions control and mitigation.  相似文献   
110.
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial–interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid‐Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross‐validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm‐temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum‐Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号