首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14974篇
  免费   2715篇
  国内免费   1003篇
  2024年   60篇
  2023年   609篇
  2022年   360篇
  2021年   613篇
  2020年   976篇
  2019年   1053篇
  2018年   942篇
  2017年   895篇
  2016年   798篇
  2015年   889篇
  2014年   925篇
  2013年   1082篇
  2012年   690篇
  2011年   739篇
  2010年   613篇
  2009年   795篇
  2008年   800篇
  2007年   633篇
  2006年   647篇
  2005年   577篇
  2004年   520篇
  2003年   454篇
  2002年   385篇
  2001年   262篇
  2000年   283篇
  1999年   254篇
  1998年   223篇
  1997年   209篇
  1996年   182篇
  1995年   150篇
  1994年   132篇
  1993年   118篇
  1992年   111篇
  1991年   101篇
  1990年   73篇
  1989年   81篇
  1988年   64篇
  1987年   59篇
  1986年   48篇
  1985年   61篇
  1984年   49篇
  1983年   25篇
  1982年   46篇
  1981年   26篇
  1980年   22篇
  1979年   22篇
  1978年   6篇
  1977年   8篇
  1976年   9篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Ecosystem biomass, soil conditions and the diversity of different taxa are often interrelated. These relationships could originate from biogeographic affinity (varying species pools) or from direct ecological effects within local communities. Disentangling regional and local causes is challenging as the former might mask the latter in natural ecosystems with varying habitat conditions. However, when the species pool contribution is considered in statistics, local ecological effects might be detected. In this study we disentangle the indirect effects of the species pool and direct ecological effects on the complex relationships among wood volume, soil conditions and diversities of different plant and fungal groups in 100 old‐growth forest sites (10 × 10 m) at the border of boreal and nemoral zones in northern Europe. We recorded all species for different vegetation groups: woody and herbaceous vascular plants, terricolous and epiphytic bryophytes and lichens. Fungal communities were detected by DNA‐based analyses from soil samples. Above‐ground wood volume was used as a proxy of biomass. We measured soil pH and nutrient content and obtained modelled climate parameters for each site. Species pool effect was considered by dividing sites into boreal and nemoral groups based on community composition. In order to disentangle direct and indirect effects, we applied variation partitioning, and raw and partial correlations. We found many significant positive relationships among studied variables. Many of these relationships were associated to boreal and nemoral species pools, thus indicating that biogeographic affinity of interacting plants and fungi largely defines forest diversity and functioning. At the same time, several relationships were significant also after considering biogeography: woody plant and ectomycorrhizal fungi diversities with wood volume, many plant and fungal groups with each other, or with soil conditions. These direct ecological interactions could be considered in forestry practices to achieve both economic gain and maintenance of biodiversity.  相似文献   
992.
Environmentally induced epigenetic variation has been recently recognized as a possible mechanism allowing plants to rapidly adapt to novel conditions. Despite increasing evidence on the topic, little is known on how epigenetic variation affects responses of natural populations to changing climate. We studied the effects of experimental demethylation (DNA methylation is an important mediator of heritable control of gene expression) on performance of a clonal grass, Festuca rubra, coming from localities with contrasting temperature and moisture regimes. We compared performance of demethylated and control plants from different populations under two contrasting climatic scenarios and explored whether the response to demethylation depended on genetic relatedness of the plants. Demethylation significantly affected plant performance. Its effects interacted with population of origin and partly with conditions of cultivation. The effects of demethylation also varied between distinct genotypes with more closely related genotypes showing more similar response to demethylation. For belowground biomass, demethylated plants showed signs of adaptation to drought that were not apparent in plants that were naturally methylated. The results suggest that DNA methylation may modify the response of this species to moisture. DNA methylation may thus affect the ability of clonal plants to adapt to novel climatic conditions. Whether this variation in DNA methylation may also occur under natural conditions, however, remains to be explored. Despite the significant interactions between population of origin and demethylation, our data do not provide clear evidence that DNA methylation enabled adaptation to different environments. In fact, we obtained stronger evidence of local adaptation in demethylated than in naturally‐methylated plants. As changes in DNA methylation may be quite dynamic, it is thus possible that epigenetic variation can mask plant adaptations to conditions of their origin due to pre‐cultivation of the plants under standardized conditions. This possibility should be considered in future experiments exploring plant adaptations.  相似文献   
993.
Ontogenetic diet shifts are pervasive in food websbut rules governing their emergence and the implications for trophic cascades are only partly understood. Recent theoretical advances in multispecies size spectrum models (MSSMs) predict that the emergence of ontogenetic diet shifts are driven primarily by size‐selective predation and changes in the relative abundances of suitably sized prey. Howeverthese assumptions have not yet been tested with data. Herewe developed alternative MSSMs based on different assumptions about the nature of species and size‐based preferences and tested them using an extensive dietary database for the Eastern Bering Sea (EBS). MSSMs with both size and species‐specific prey preferences correctly predicted approximately three‐fold more of the diet links than those that assumed fixed species preferences. Importantlythese model assumptions also had a profound effect on the strength of fishing‐induced trophic cascades and the emergent trophic structure of the community with and without fishing. The diet‐informed models exhibited lower predation mortality ratesparticularly for small individuals (less than 1 g) whichin turnreduced the intensity and reach of fishing‐induced trophic cascades up the size spectrum. If the level and size dependency of piscivory observed in EBS predators is typical of other systemsthe potential for fishing‐induced trophic cascades may be over‐stated in MSSMs as they are currently formulated and parameterized. Representation of species‐specific ontogenetic shifts in diet can strongly influence system responses to perturbationsand the extensions we propose should accelerate adoption of MSSMs as frameworks for exploring size‐based food web theory and developing modeling tools to support strategic management decisions.  相似文献   
994.
Variation in the degree of synchrony among host plants and herbivores can disrupt or intensify species interactions, alter the strength of natural selection on traits associated with phenological timing, and drive novel host plant associations. We used field observations from three regions during four seasons to examine how timing of the butterfly herbivore Anthocharis cardamines relative to six host plant species (Arabis hirsuta, Cardamine pratensis, Arabis glabra, Arabidopsis thaliana, Thlaspi caerulescens and Capsella bursa‐pastoris) influenced host species use and the choice of host plant individuals within populations. Butterflies laid a larger fraction of their eggs on species that were closer to the butterfly's preferred stage of development than on other host species. Within host plant populations, butterflies showed a stronger preference for individuals with a late phenology when plants within the population were on average more developed at the time of butterfly flight. Our results suggest that changes in synchrony between herbivores and their host plants are associated with changes in both host species use and the choice of host plant individuals differing in phenology within populations. This is likely to be an important mechanism generating variation in interaction intensities and trait selection in the wild, and therefore also relevant for understanding how anthropogenic induced changes, such as global warming, will influence natural communities.  相似文献   
995.
996.
997.
998.
Reconstituted nicotinic acetylcholine receptors (nAChRs) exhibit significant gain-of-function upon addition of cholesterol to reconstitution mixtures, and cholesterol affects the organization of nAChRs within domain-forming membranes, but whether nAChR partitions to cholesterol-rich liquid-ordered (“raft” or lo) domains or cholesterol-poor liquid-disordered (ldo) domains is unknown. We use coarse-grained molecular dynamics simulations to observe spontaneous interactions of cholesterol, saturated lipids, and polyunsaturated (PUFA) lipids with nAChRs. In binary Dipalmitoylphosphatidylcholine:Cholesterol (DPPC:CHOL) mixtures, both CHOL and DPPC acyl chains were observed spontaneously entering deep “non-annular” cavities in the nAChR TMD, particularly at the subunit interface and the β subunit center, facilitated by the low amino acid density in the cryo-EM structure of nAChR in a native membrane. Cholesterol was highly enriched in the annulus around the TMD, but this effect extended over (at most) 5–10 Å. In domain-forming ternary mixtures containing PUFAs, the presence of a single receptor did not significantly affect the likelihood of domain formation. nAChR partitioned to any cholesterol-poor ldo domain that was present, regardless of whether the ldo or lo domain lipids had PC or PE headgroups. Enrichment of PUFAs among boundary lipids was positively correlated with their propensity for demixing from cholesterol-rich phases. Long n-3 chains (tested here with Docosahexaenoic Acid, DHA) were highly enriched in annular and non-annular embedded sites, partially displacing cholesterol and completely displacing DPPC, and occupying sites even deeper within the bundle. Shorter n-6 chains were far less effective at displacing cholesterol from non-annular sites.  相似文献   
999.
1000.
Heparin belongs to glycosaminoglycans (GAGs), a class of periodic linear anionic polysaccharides, which are functionally important components of the extracellular matrix owing to their interactions with various protein targets. Heparin is known to be involved in many cell signaling processes, while the experimental data available for heparin are significantly more abundant than for other GAGs. At the same time, the length and conformational flexibility of the heparin represent major challenges for its theoretical analysis. Coarse-grained (CG) approaches, which enable us to extend the size- and time-scale by orders of magnitude owing to reduction of system representation, appear, therefore, to be useful in simulating these systems. In this work, by using umbrella-sampling molecular dynamics simulations, we derived and parameterized the CG backbone-local potentials of heparin chains and the orientational potentials for the interactions of heparin with amino acid side chains to be further included in the physics-based Unified Coarse-Grained Model of biological macromolecules. With these potentials, simulations of extracellular matrix processes where both heparin and multiple proteins participate will be possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号