首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7310篇
  免费   1816篇
  国内免费   944篇
  2024年   61篇
  2023年   449篇
  2022年   237篇
  2021年   346篇
  2020年   671篇
  2019年   681篇
  2018年   602篇
  2017年   609篇
  2016年   536篇
  2015年   567篇
  2014年   547篇
  2013年   593篇
  2012年   446篇
  2011年   414篇
  2010年   369篇
  2009年   401篇
  2008年   366篇
  2007年   294篇
  2006年   229篇
  2005年   239篇
  2004年   194篇
  2003年   153篇
  2002年   148篇
  2001年   120篇
  2000年   146篇
  1999年   96篇
  1998年   76篇
  1997年   60篇
  1996年   58篇
  1995年   55篇
  1994年   44篇
  1993年   45篇
  1992年   24篇
  1991年   24篇
  1990年   16篇
  1989年   15篇
  1988年   13篇
  1987年   9篇
  1986年   14篇
  1985年   16篇
  1984年   12篇
  1983年   11篇
  1982年   21篇
  1981年   8篇
  1980年   10篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1976年   4篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
P2-fractions were isolated from rat brain, and used to study net taurine transport. The fractions were incubated in increasing concentrations of [3H]taurine and the intraterminal concentration measured by liquid scintillation and amino acid analysis. The membrane potential of the isolated fractions was estimated using86Rb+ as a marker for intracellular K+. Taurine was synthesized in the P2-fraction when incubated in taurine free medium. At external taurine concentrations below 370 M a significant amount of the endogenous taurine was released to the incubation medium. Net taurine uptake into the P2-fraction was achieved at external taurine concentrations exceeding 370 M. The taurine antagonist 6-aminomethyl-3-methyl-4H, 1, 2, 4-benzothiadiazine-1, 1-dioxide (TAG) competitively inhibited taurine and [3H]taurine transport into the P2-fraction. As the external concentration of taurine was increased, the accumulation of86Rb+ into the P2-fraction was facilitated. This indicated an increasing hyperpolarization of the neuronal membrane as taurine transport shifted from release towards uptake. TAG reduced the hyperpolarization that paralleled taurine accumulation, in a dose dependent manner. Our results indicate that relatively low transmembranal gradients of taurine may be maintained by an electrogenic taurine transporter having a large transport capacity. Such a transporter may well serve the needs of osmotic regulation, i.e. to transport large amounts of taurine in any direction across the neuronal membrane.  相似文献   
52.
The effect of elevated atmospheric CO2 on water distribution in the intact roots of Vicia faba L. bean seedlings grown in natural soil was studied noninvasively with proton (1H) nuclear magnetic resonance (NMR) imaging. Exposure of 24-d-old plants to atmospheric CO2-enriched air at 650 cm3 m?3 produced significant increases in water imaged in upper roots, hypogeal cotyledons and lower stems in response to a short-term drying-stress cycle. Above ground, drying produced negligible stem shrinkage and stomatal resistance was unchanged. In contrast, the same drying cycle caused significant depletion of water imaged in the same upper root structures in control plants subject to ambient CO2 (350 m3 m?3), and stem shrinkage and increased stomatal resistance. The results suggest that inhibition of transpiration caused by elevated CO2 does not necessarily result in attenuation of water transport from lower root structures. Inhibition of water loss from upper roots and lower stem in elevated CO2 environments may be a mitigating factor in assessing deleterious effects of greenhouse changes on crops during periods of dry climate.  相似文献   
53.
Latitudinal gradients of tree species composition along the Sierran/Cascade axis in northern California were explored by comparing forests of Lassen Volcanic and Yosemite National Parks, USA. A calibration procedure based on canonical correspondence analysis predicted a mean rate of elevational displacement of 172.1 m/° latitude for Lassen sites in Yosemite. This is a steep latitudinal gradient compared with other temperate uplands (which average around 100 m/0 latitude), but it corresponds with the magnitude of the July mean temperature gradient (143 m/0 latitude) and the annual precipitation gradient (230 m/0 latitude). Elevational displacement of basal-area weighted species means showed considerable variation. The range for montane species was 20–153 m/0 latitude; for subalpine species the range was 142–305 m/0 latitude. This disparity is related to differential temperature lapse rates between regions and is reinforced by contrasting biogeographic affinities of montane vs. subalpine species. Whereas it is uniformly hot and dry during the growing season at lower elevations in both regions, growing seasons in the subalpine zone are significantly warmer and drier (at comparable elevations) in Yosemite, the more southerly locale. Furthermore, montane species are principally of Sierran affinity, whereas subalpine are primarily of Pacific Northwestern affinity.  相似文献   
54.
Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.  相似文献   
55.
Global warming is affecting the Antarctic continent in complex ways. Because Antarctic organisms are specialized to living in the cold, they are vulnerable to increasing temperatures, although quantitative analyses of this issue are currently lacking. Here we compiled a total of 184 estimates of heat tolerance belonging to 39 marine species and quantified how survival is affected concomitantly by the intensity and duration of thermal stress. Species exhibit thermal limits displaced toward colder temperatures, with contrasting strategies between arthropods and fish that exhibit low tolerance to acute heat challenges, and brachiopods, echinoderms, and molluscs that tend to be more sensitive to chronic exposure. These differences might be associated with mobility. A dynamic mortality model suggests that Antarctic organisms already encounter temperatures that might be physiologically stressful and indicate that these ecological communities are indeed vulnerable to ongoing rising temperatures.  相似文献   
56.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   
57.
Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050–2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype–environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.  相似文献   
58.
Soil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.  相似文献   
59.
Evaluating the potential climatic suitability for premium wine production is crucial for adaptation planning in Europe. While new wine regions may emerge out of the traditional boundaries, most of the present-day renowned winemaking regions may be threatened by climate change. Here, we analyse the future evolution of the geography of wine production over Europe, through the definition of a novel climatic suitability indicator, which is calculated over the projected grapevine phenological phases to account for their possible contractions under global warming. Our approach consists in coupling six different de-biased downscaled climate projections under two different scenarios of global warming with four phenological models for different grapevine varieties. The resulting suitability indicator is based on fuzzy logic and is calculated over three main components measuring (i) the timing of the fruit physiological maturity, (ii) the risk of water stress and (iii) the risk of pests and diseases. The results demonstrate that the level of global warming largely determines the distribution of future wine regions. For a global temperature increase limited to 2°C above the pre-industrial level, the suitable areas over the traditional regions are reduced by about 4%/°C rise, while for higher levels of global warming, the rate of this loss increases up to 17%/°C. This is compensated by a gradual emergence of new wine regions out of the traditional boundaries. Moreover, we show that reallocating better-suited grapevine varieties to warmer conditions may be a viable adaptation measure to cope with the projected suitability loss over the traditional regions. However, the effectiveness of this strategy appears to decrease as the level of global warming increases. Overall, these findings suggest the existence of a safe limit below 2°C of global warming for the European winemaking sector, while adaptation might become far more challenging beyond this threshold.  相似文献   
60.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号