首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11079篇
  免费   1736篇
  国内免费   913篇
  2024年   84篇
  2023年   771篇
  2022年   438篇
  2021年   595篇
  2020年   976篇
  2019年   1086篇
  2018年   991篇
  2017年   855篇
  2016年   856篇
  2015年   725篇
  2014年   942篇
  2013年   1439篇
  2012年   460篇
  2011年   417篇
  2010年   370篇
  2009年   379篇
  2008年   340篇
  2007年   263篇
  2006年   198篇
  2005年   238篇
  2004年   197篇
  2003年   144篇
  2002年   145篇
  2001年   107篇
  2000年   127篇
  1999年   80篇
  1998年   71篇
  1997年   60篇
  1996年   40篇
  1995年   38篇
  1994年   32篇
  1993年   33篇
  1992年   15篇
  1991年   18篇
  1990年   9篇
  1989年   8篇
  1986年   8篇
  1985年   17篇
  1984年   22篇
  1983年   27篇
  1982年   21篇
  1981年   12篇
  1980年   14篇
  1979年   12篇
  1978年   9篇
  1977年   10篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 l CO2 l–1) and increased N deposition (0,30 and 90 kg ha–1 year–1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 l CO2 l–1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 l l–1. Remarkably, further CO2 enrichment to 560 l l–1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the slow growing H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 l CO2 l–1 compared to 280 l l–1 (again no further stimulation at 560 l l–1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of several of the traits studied here suggest that the largest responses to rising atmospheric CO2 are under way now or have already occurred and possible future responses to further increases in CO2 concentration are likely to be much smaller in these understory species.  相似文献   
72.
Various hypotheses have been put forward to explain the presence of sclerophyllous plant disjuncts between western North America and the Mediterranean region. The Madrean–Tethyan hypothesis postulates that the two regions were floristically connected in the Early to Middle Tertiary by way of a low-latitude migration route. Others deny the possibility of such a route, and instead postulate convergence to xerophytic conditions from more widespread mesophytic ancestors, or suggest long-distance dispersal scenarios. One example of a “Madrean–Tethyan link” between the two regions is composed of four species within the genus Styrax: S. officinalis subsp. officinalis from the Mediterranean region, S. officinalis subsp. redivivus and subsp. fulvescens from California, and three closely related species in Texas and northeastern Mexico (S. texanus, S. platanifolius, and S. youngiae). This group was examined with isozymes to assess whether patterns of genetic variation are consistent with those predicted by the Madrean–Tethyan hypothesis. Ten populations from California, six from the Mediterranean region, and three from Texas were sampled. Pairwise comparisons revealed mean genetic identity (I) estimates of 0.581 between Mediterranean and California populations, 0.470 between Mediterranean and Texas populations, and 0.640 between California and Texas populations. Two populations of a species thought by many to be the closest relative of S. officinalis on morphological grounds (S. jaliscanus) exhibited low I (0.299–0.321) relative to all other group comparisons. Intercontinentally disjunct populations of S. officinalis possessed an I value that warrants species status for the Californian and Mediterranean groups. Divergence time estimates between Madrean and Tethyan Styrax range from 5.0 to 13.8 Mya, too recent to be consistent with the Madrean–Tethyan hypothesis. However, alternative explanations for this disjunction are suboptimal in that they require the invocation of either long-distance dispersal, which appears unlikely in this group, or extinction. Nonetheless, the evidence presented here and in other recent studies casts substantial doubt on the Madrean–Tethyan hypothesis as a general explanation for the presence of Madrean and Tethyan taxa similar in overall appearance. More plants with Madrean–Tethyan distributions must be sampled before definitive conclusions regarding this aspect of Madrean and Tethyan vegetation can be reached.  相似文献   
73.
The water status of the collembolan Cryptopygtus antarcticus (Willem) was investigated from April 1984 to December 1987 at Signy Island, maritime Antarctic, by monthly field sampling to determine body water content. Water content, expressed either as the weight of water per unit dry weight or as a proportion of fresh weight, exhibited both a seasonal cycle and an upward trend over the 44-month study, both of which were highly significant. On an annual basis, body water content was at a minimum (1.21 g g?1) in July and maximal (1.98 g g?1) in September, whilst over the entire study water contents increased from 1.3 to 2.0 g g?1 (or 57-66% of fresh weight) calculated from the fitted linear regression line. Field water contents were below those found for this species in culture (2.9-5.9 g g?1). Individual C. antarcticus survived experimental loss of 20% of their body water with a resultant significant rise in haemolymph osmolarity from 285 to 397 mOsm L?1 and there was no evidence of osmoregulation under the experimental conditions of 20 °C and 35% relative humidity. The cuticular permeability (mean conductance) of individual Collembola in dry air increased exponentially with temperature over the range D-45 °C (Q10= 2.0) showing no control of water loss. The physiological response of C. antarcticus suggests that it experiences water stress in its maritime Antarctic habitats with significant seasonal variations of body water content, which correlate with annual cycles of water availability. It is concluded that the significant rise in its mean body water content over the 44-month field study was associated with increased glacial ablation due to higher levels of irradiation and windspeed making available more liquid water. Analyses of climate records for Signy Island from 1947 to 1990 showed that mean monthly air temperature rose by 0.93 °C over this period and by 2.29 °C during the 1980s, both statistically significant increases. Mean monthly windspeeds also increased significantly during 1970–90, and it is suggested that this parameter is the primary climatic driving force behind the increase in glacial ablation during the last two decades. The field water status of species such as C. antarcticus may reflect changes in the patterns of atmospheric circulation, associated with the circumpolar vortex, through increased ozone depletion due to increased tropospheric concentrations of halocarbons.  相似文献   
74.
Global temperature stability by rule induction: An interdisciplinary bridge   总被引:2,自引:0,他引:2  
Rules incorporating influences on global temperature, an estimate of radiation balance, were induced from astronomical, geophysical, and anthropogenic variables. During periods of intermediate global temperatures (generally like the present century), the influences assume cancelingroles; influences cancel the effects of extreme states potentially imposed by other influences because they are, in aggregate, most likely to be assuming opposite values. This imparts an overall stability to the global temperature. To achieve cold or hot global temperature, influences assume reinforcingroles. CO 2 is an active influence on global temperature. By virtue of its constancy in the atmosphere, it can be expected to sponsor frequent hot years in combination with the other influences as they cycle through their periods. If measures were implemented to maintain warm or cool global temperatures, it could retain the status quoof present global agricultural regions. They are probably more productive than hot world regions would be because of narrow storm tracks.  相似文献   
75.
The June 1991 eruption of Mt. Pinatubo in the Philippines produced one of the greatest volcanic aerosols in the last hundred years. The estimated net decrease of radiation may have peaked at 10% in the tropics. What was the impact of the Pinatubo aerosol on regional and global climate? Besides the expected net cooling of the average global surface temperature, correlation studies indicate that other types of climate anomalies may also be expected. These include the appearance of an El Niño event, decreased Indian monsoon rainfall, fewer tropical storms in the north Atlantic Ocean in 1991–1993, and normal to above normal winter rainfall in California in 1991/92, all of which were observed. A proposed physical mechanism for the almost-simultaneous occurrence of this constellation of climate anomalies is presented. The results of correlation studies between low-latitude volcanic aerosols and the El Niño/Southern Oscillation are presented in some detail as one example. The correlation between Indian monsoon rainfall and tropical storms in the north Atlantic Ocean is also shown and is updated for the most recent 5 years.  相似文献   
76.
The effect of elevated atmospheric CO2 on water distribution in the intact roots of Vicia faba L. bean seedlings grown in natural soil was studied noninvasively with proton (1H) nuclear magnetic resonance (NMR) imaging. Exposure of 24-d-old plants to atmospheric CO2-enriched air at 650 cm3 m?3 produced significant increases in water imaged in upper roots, hypogeal cotyledons and lower stems in response to a short-term drying-stress cycle. Above ground, drying produced negligible stem shrinkage and stomatal resistance was unchanged. In contrast, the same drying cycle caused significant depletion of water imaged in the same upper root structures in control plants subject to ambient CO2 (350 m3 m?3), and stem shrinkage and increased stomatal resistance. The results suggest that inhibition of transpiration caused by elevated CO2 does not necessarily result in attenuation of water transport from lower root structures. Inhibition of water loss from upper roots and lower stem in elevated CO2 environments may be a mitigating factor in assessing deleterious effects of greenhouse changes on crops during periods of dry climate.  相似文献   
77.
Tree growth varies closely with high–frequency climate variability. Since the 1930s detrending climate data prior to comparing them with tree growth data has been shown to better capture tree growth sensitivity to climate. However, in a context of increasingly pronounced trends in climate, this practice remains surprisingly rare in dendroecology. In a review of Dendrochronologia over the 2018–2021 period, we found that less than 20 % of dendroecological studies detrended climate data prior to climate-growth analyses. With an illustrative study, we want to remind the dendroecology community that such a procedure is still, if not more than ever, rational and relevant. We investigated the effects of detrending climate data on climate–growth relationships across North America over the 1951–2000 period. We used a network of 2536 tree individual ring-width series from the Canadian and Western US forest inventories. We compared correlations between tree growth and seasonal climate data (Tmin, Tmax, Prec) both raw and detrended. Detrending approaches included a linear regression, 30-yr and 100-yr cubic smoothing splines. Our results indicate that on average the detrending of climate data increased climate–growth correlations. In addition, we observed that strong trends in climate data translated to higher variability in inferred correlations based on raw vs. detrended climate data. We provide further evidence that our results hold true for the entire spectrum of dendroecological studies using either mean site chronologies and correlations coefficients, or individual tree time series within a mixed-effects model framework where regression coefficients are used more commonly. We show that even without a change in correlation, regression coefficients can change a lot and we tend to underestimate the true climate impact on growth in case of climate variables containing trends. This study demonstrates that treating climate and tree-ring time series “like-for-like” is a necessary procedure to reduce false negatives and positives in dendroecological studies. Concluding, we recommend using the same detrending for climate and tree growth data when tree-ring time series are detrended with splines or similar frequency-based filters.  相似文献   
78.
Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.  相似文献   
79.
Global warming is affecting the Antarctic continent in complex ways. Because Antarctic organisms are specialized to living in the cold, they are vulnerable to increasing temperatures, although quantitative analyses of this issue are currently lacking. Here we compiled a total of 184 estimates of heat tolerance belonging to 39 marine species and quantified how survival is affected concomitantly by the intensity and duration of thermal stress. Species exhibit thermal limits displaced toward colder temperatures, with contrasting strategies between arthropods and fish that exhibit low tolerance to acute heat challenges, and brachiopods, echinoderms, and molluscs that tend to be more sensitive to chronic exposure. These differences might be associated with mobility. A dynamic mortality model suggests that Antarctic organisms already encounter temperatures that might be physiologically stressful and indicate that these ecological communities are indeed vulnerable to ongoing rising temperatures.  相似文献   
80.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号