首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1183篇
  免费   50篇
  国内免费   55篇
  2023年   10篇
  2022年   24篇
  2021年   21篇
  2020年   16篇
  2019年   31篇
  2018年   30篇
  2017年   28篇
  2016年   31篇
  2015年   19篇
  2014年   41篇
  2013年   83篇
  2012年   30篇
  2011年   51篇
  2010年   50篇
  2009年   69篇
  2008年   62篇
  2007年   59篇
  2006年   43篇
  2005年   64篇
  2004年   54篇
  2003年   43篇
  2002年   49篇
  2001年   27篇
  2000年   34篇
  1999年   24篇
  1998年   23篇
  1997年   29篇
  1996年   16篇
  1995年   25篇
  1994年   20篇
  1993年   13篇
  1992年   19篇
  1991年   7篇
  1990年   15篇
  1989年   4篇
  1988年   6篇
  1987年   11篇
  1986年   13篇
  1985年   10篇
  1984年   14篇
  1983年   13篇
  1982年   15篇
  1981年   10篇
  1980年   10篇
  1979年   11篇
  1978年   8篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1288条查询结果,搜索用时 93 毫秒
141.
A new sulfur-ligated Zn-peptide 1:2 complex, [Zn(II)(Boc-NH-Cys-Gly-Cys-OMe)2]2- (2), was prepared, characterized, and tested for its DNA-binding and -cleavage properties. Complex 2 was found to cleave DNA hydrolytically. The negative charge in 2 reduces the affinity of the complex for DNA, and enhances its binding specificity.  相似文献   
142.
Hepatitis C virus (HCV) internal non-structural protein 3 (NS3) cleavage can occur in trans in the presence of NS4A. In this study, we have further demonstrated a critical role of the helicase domain in the internal NS3 cleavage, different from HCV polyprotein processing which requires only the serine protease domain. The NTPase domain of NS3 helicase interacts with the RNA binding domain to facilitate internal NS3 cleavage. In addition, NS3 protease activity contributes to the transforming ability of the major internal cleavage product NS3(1-402). These findings imply important roles of the internal cleavage and protease activity of the NS3 protein in the pathogenesis of HCV.

Structured summary

MINT-7306465: NS3 (uniprotkb:P29846) physically interacts (MI:0915) with NS3 (uniprotkb:P29846) by anti tag coimmunoprecipitation (MI:0007).  相似文献   
143.
A link between cellular uptake of high density lipoprotein (HDL) and regulation of sterol regulatory element-binding protein-1 (SREBP-1) was investigated in vitro. HDL decreased nuclear SREBP-1 levels as well as SREBP-1 target gene expression in HepG2 and HEK293 cells. However, HDL did not repress an exogenously expressed, constitutively active form of SREBP-1. HDL increased cellular cholesterol levels, and cellular cholesterol depletion by methyl-β-cyclodextrin abolished the effects of HDL. These results suggest that HDL inhibits the activation of SREBP-1 through a cholesterol-dependent mechanism, which may play an important role in regulating lipid synthetic pathways mediated by SREBP-1.  相似文献   
144.
An aerobic microorganism with an ability to utilize phenol as carbon and energy source was isolated from a hydrocarbon contamination site by employing selective enrichment culture technique. The isolate was identified as Arthrobacter citreus based on morphological, physiological and biochemical tests. This mesophilic organism showed optimal growth at 25°C and at pH of 7.0. The phenol utilization studies with Arthrobacter citreus showed that the complete assimilation occurred in 24 hours. The organism metabolized phenol up to 22 mM concentrations whereas higher levels were inhibitory. Thin layer chromatography, UV spectral and enzyme analysis were suggestive of catechol, as a key intermediate of phenol metabolism. The enzyme activities of phenol hydroxylase and catechol 2,3-dioxygenase in cell free extracts of Arthrobacter citreus were indicative of operation of a meta-cleavage pathway for phenol degradation. The organism had additional ability to degrade catechol, cresols and naphthol. The degradation rates of phenol by alginate and agar immobilized cells in batch fermentations showed continuous phenol metabolism for a period of eight days.  相似文献   
145.
The known action of Cu, Zn superoxide dismutase (holo SOD) that converts O2 to O2 and H2O2 plays a crucial role in protecting cells from toxicity of oxidative stress. However, the overproduction of holo SOD does not result in increased protection but rather creates a variety of unfavorable effects, suggesting that too much holo SOD may be injurious to the cells. In the in vitro study, we report a finding that the holo SOD from bovine erythrocytes and its apo form possess a divalent-metal-dependent nucleolytic activity, which was confirmed by UV–vis absorption titration of calf thymus DNA (ctDNA) with the holo SOD, quenching of holo SOD intrinsic fluorescence by ctDNA, and by gel electrophoresis monitoring conversion of DNA from the supercoiled DNA to nicked and linear forms, and fragmentation of a linear λDNA. Moreover, the DNA cleavage activity was examined in detail under certain reaction conditions. The steady-state study indicates that DNA cleavage supported by both forms of SOD obeys Michaelis–Menten kinetics. On the other hand, the assays with some other proteins indicate that this new function is specific to some proteins including the holo SOD. Therefore, this study reveals that the divalent-metal-dependent DNA cleavage activity is an intrinsic property of the holo SOD, which is independent of its natural metal (copper and zinc) sites, and may provide an alternative insight into the link between SOD enzymes and neurodegenerative disorders.  相似文献   
146.
147.
Antimicrobial peptide LL-37 plays an important role in human body's first line of defense against infection. To better understand the mechanism of action, it is critical to elucidate the three-dimensional structure of LL-37 in complex with bacterial membranes. We present a bacterial expression system that allows the incorporation of (15)N and other isotopes into the polypeptide for nuclear magnetic resonance (NMR) analysis. The DNA sequence encoding full-length LL-37 was chemically synthesized and cloned into the pET-32a(+) vector for protein expression in Escherichia coli strain BL21(DE3). The peptide was expressed directly as a His-tagged fusion protein without the inclusion of its precursor sequence. LL-37 was released from the fusion by formic acid cleavage at the AspPro dipeptide bond and separated from the carrier thioredoxin by affinity chromatography and reverse-phase HPLC. The peptide was identified by polyacrylamide gel electrophoresis and further confirmed by mass spectrometry and NMR spectroscopy. Antibacterial activity assays showed that the recombinant LL-37 purified from the bacterial source is as active as that from chemical synthesis. According to the antimicrobial peptide database (), 111 peptides contain a Met residue, but only 5 contain the AspPro pair, indicating a broader application of formic acid than cyanogen bromide in cleaving fusion proteins. The successful application to the expression of the 66-residue cytoplasmic tail of human MUC1 indicates that the system can be applied to other peptides as well.  相似文献   
148.
Biodegradation of aromatic compounds by microalgae   总被引:10,自引:0,他引:10  
  相似文献   
149.
Collagens are a family of at least 30 protein types organized as networks. They constitute the main support material of cells under the form of extracellular matrix as well as for membranes in vessels, organs, and tissue compartments. Collagen network abnormalities are at the origin of many diseases, including myopathies and fibroses. The characterization of collagens remains an analytical challenge due to the insolubility of these molecules and the difficulty encountered in isolating given types without altering their structure or in maintaining network organization, which is critical to diagnosing related pathologies. We have proposed using a vibrational spectroscopy based imaging technique, namely Fourier-transform infrared (FTIR) imaging, for a spatially-resolved analysis of secondary structure of different collagen types in complex samples, and more specifically for characterizing gliomas. With newly developed spectral data treatments and chemometrics using secondary structure parameters of collagen proteins, FTIR imaging is now able to distinguish between several types. On this basis, gliomas have been investigated as specific collagen-rich tissues developing in a non-collagenous environment, providing high specificity to this FTIR imaging utilization. Here, we review the recent advances in this imaging approach for understanding glioma development, with FTIR imaging now being proposed as a molecular histopathology tool for clinicians.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号