首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   42篇
  国内免费   11篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   16篇
  2019年   17篇
  2018年   21篇
  2017年   22篇
  2016年   14篇
  2015年   21篇
  2014年   20篇
  2013年   38篇
  2012年   21篇
  2011年   17篇
  2010年   16篇
  2009年   14篇
  2008年   10篇
  2007年   24篇
  2006年   12篇
  2005年   6篇
  2004年   15篇
  2003年   14篇
  2002年   18篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有455条查询结果,搜索用时 31 毫秒
21.
In eukaryotic cells short-lived proteins are degraded in a specific process by the ubiquitin-proteasome system (UPS), whereas long-lived proteins and damaged organelles are degraded by macroautophagy (hereafter referred to as autophagy). A growing body of evidence now suggests that autophagy is important for clearance of protein aggregates that form in cells as a consequence of ageing, oxidative stress, alterations that elevate the amounts of certain aggregation-prone proteins or expression of aggregating mutant variants of specific proteins. Autophagy is generally considered to be a non-specific, bulk degradation process. However, a recent study suggests that p62/SQSTM1 may link the recognition of polyubiquitinated protein aggregates to the autophagy machinery.1 This protein is able to polymerize via its N-terminal PB1 domain and to recognize polyubiquitin via its C-terminal UBA domain. It can also recruit the autophagosomal protein LC3 and co-localizes with many types of polyubiquitinated protein aggregates.1 Here we discuss possible implications of these findings and raise some questions for further investigation.  相似文献   
22.
《Autophagy》2013,9(9):1342-1356
Cytosolic bacterial pathogens must evade intracellular innate immune recognition and clearance systems such as autophagy to ensure their survival and proliferation. The intracellular cycle of the bacterium Francisella tularensis is characterized by rapid phagosomal escape followed by extensive proliferation in the macrophage cytoplasm. Cytosolic replication, but not phagosomal escape, requires the locus FTT0369c, which encodes the dipA gene (deficient in intracellular replication A). Here, we show that a replication-deficient, ?dipA mutant of the prototypical SchuS4 strain is eventually captured from the cytosol of murine and human macrophages into double-membrane vacuoles displaying the late endosomal marker, LAMP1, and the autophagy-associated protein, LC3, coinciding with a reduction in viable intracellular bacteria. Capture of SchuS4ΔdipA was not dipA-specific as other replication-deficient bacteria, such as chloramphenicol-treated SchuS4 and a purine auxotroph mutant SchuS4ΔpurMCD, were similarly targeted to autophagic vacuoles. Vacuoles containing replication-deficient bacteria were labeled with ubiquitin and the autophagy receptors SQSTM1/p62 and NBR1, and their formation was decreased in macrophages from either ATG5-, LC3B- or SQSTM1-deficient mice, indicating recognition by the ubiquitin-SQSTM1-LC3 pathway. While a fraction of both the wild-type and the replication-impaired strains were ubiquitinated and recruited SQSTM1, only the replication-defective strains progressed to autophagic capture, suggesting that wild-type Francisella interferes with the autophagic cascade. Survival of replication-deficient strains was not restored in autophagy-deficient macrophages, as these bacteria died in the cytosol prior to autophagic capture. Collectively, our results demonstrate that replication-impaired strains of Francisella are cleared by autophagy, while replication-competent bacteria seem to interfere with autophagic recognition, therefore ensuring survival and proliferation.  相似文献   
23.
RNA polymerase II is recruited to DNA double-strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage-induced long non-coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA-like molecules or degraded by different ribonucleases. They can also form double-stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to the accuracy of the DNA repair. However, if not resolved, the DNA:RNA hybrids are highly mutagenic and prevent the recruitment of later HR factors. Here recent discoveries about the synthesis, processing, and degradation of dilncRNAs are revised. The focus is on RNA clearance, a necessary step for the successful repair of DSBs and the aim is to reconcile contradictory findings on the effects of dilncRNAs and DNA:RNA hybrids in HR.  相似文献   
24.
Hepatitis C virus (HCV) infection is among the leading causes of hepatocellular carcinoma and liver cirrhosis globally, with a high economic burden. The disease progression is well established, but less is known about the spontaneous HCV infection clearance. This study tries to establish the relationship between codon biasness and expression of HCV clearance candidate genes in normal and HCV infected liver tissues. A total of 112 coding sequences comprising 151 679 codons were subjected to the computation of codon indices, namely relative synonymous codon usage, an effective number of codon (Nc), frequency of optimal codon, codon adaptation index, codon bias index, and base compositions. Codon indices report of GC3s, GC12, hydropathicity, and aromaticity implicates both mutational and translational selection in the candidate gene set. This was further correlated with the differentially expressed genes among the selected genes using BioGPS. A significant correlation is observed between the gene expression of normal liver and cancerous liver tissues with codon bias (Nc). Gene expression is also correlated with relative codon bias values, indicating that CCL5, APOA2, CD28, IFITM1, and TNFSF4 genes have higher expression. These results are quite encouraging in selecting the high responsive genes in HCV clearance. However, there could be additional genes which could also orchestrate the clearance role with the above mentioned first line of defensive genes.  相似文献   
25.
Membrane adsorbers may be a viable alternative to the packed‐bed chromatography for clearance of virus, host cell proteins, DNA, and other trace impurities. However, incorporation of membrane adsorbers into manufacturing processes has been slow due to the significant cost associated with obtaining regulatory approval for changes to a manufacturing process. This study has investigated clearance of minute virus of mice (MVM), an 18–22 nm parvovirus recognized by the FDA as a model viral impurity. Virus clearance was obtained using three commercially available anion exchange membrane adsorbers: Sartobind Q®, Mustang Q®, and ChromaSorb®. Unlike earlier studies that have focused on a single or few operating conditions, the aim here was to determine the level of virus clearance under a range of operating conditions that could be encountered in industry. The effects of varying pH, NaCl concentration, flow rate, and other competing anionic species present in the feed were determined. The removal capacity of the Sartobind Q and Mustang Q products, which contain quaternary ammonium based ligands, is sensitive to feed conductivity and pH. At conductivities above about 20 mS/cm, a significant decrease in capacity is observed. The capacity of the ChromaSorb product, which contains primary amine based ligands, is much less affected by ionic strength. However the capacity for binding MVM is significantly reduced in the presence of phosphate ions. These differences may be explained in terms of secondary hydrogen bonding interactions that could occur with primary amine based ligands. Biotechnol. Bioeng. 2013; 110: 491–499. © 2012 Wiley Periodicals, Inc.  相似文献   
26.
Virus‐removal filtration technology is commonly used in the manufacturing process for biologics to remove potential viral contaminants. Virus‐removal filters designed for retaining parvovirus, one of the smallest mammalian viruses, are considered an industry standard as they can effectively remove broad ranges of viruses. It has long been observed that the performance of virus filters can be influenced by virus preparations used in the laboratory scale studies (PDA, 2010 ). However, it remains unclear exactly what quality attributes of virus preparations are critical or indicative of virus filter performance as measured by effectiveness of virus removal and filter capacity consistency. In an attempt to better understand the relationship between virus preparation and virus filter performance, we have systematically prepared and analyzed different grades of parvovirus with different purity levels and compared their performance profiles on Viresolve® Pro parvovirus filters using four different molecules. Virus preparations used in the studies were characterized using various methods to measure DNA and protein content as well as the hydrodynamic diameter of virus particles. Our results indicate that the performance of Viresolve® Pro filters can be significantly impacted depending on the purity of the virus preparations used in the spike and recovery studies. More importantly, we have demonstrated that the purity of virus preparations is directly correlated to the measurable biochemical and biophysical properties of the virus preparations such as DNA and protein content and monodispersal status, thus making it possible to significantly improve the consistency and predictability of the virus filter performance during process step validations. Biotechnol. Bioeng. 2013; 110: 229–239. © 2012 Wiley Periodicals, Inc.  相似文献   
27.
Therapeutic antibodies continue to develop as an emerging drug class, with a need for preclinical tools to better predict in vivo characteristics. Transgenic mice expressing human neonatal Fc receptor (hFcRn) have potential as a preclinical pharmacokinetic (PK) model to project human PK of monoclonal antibodies (mAbs). Using a panel of 27 mAbs with a broad PK range, we sought to characterize and establish utility of this preclinical animal model and provide guidance for its application in drug development of mAbs. This set of mAbs was administered to both hemizygous and homozygous hFcRn transgenic mice (Tg32) at a single intravenous dose, and PK parameters were derived. Higher hFcRn protein tissue expression was confirmed by liquid chromatography-high resolution tandem mass spectrometry in Tg32 homozygous versus hemizygous mice. Clearance (CL) was calculated using non-compartmental analysis and correlations were assessed to historical data in wild-type mouse, non-human primate (NHP), and human. Results show that mAb CL in hFcRn Tg32 homozygous mouse correlate with human (r2 = 0.83, r = 0.91, p < 0.01) better than NHP (r2 = 0.67, r = 0.82, p < 0.01) for this dataset. Applying simple allometric scaling using an empirically derived best-fit exponent of 0.93 enabled the prediction of human CL from the Tg32 homozygous mouse within 2-fold error for 100% of mAbs tested. Implementing the Tg32 homozygous mouse model in discovery and preclinical drug development to predict human CL may result in an overall decreased usage of monkeys for PK studies, enhancement of the early selection of lead molecules, and ultimately a decrease in the time for a drug candidate to reach the clinic.  相似文献   
28.
This paper presents a method of monocular human motion tracking for estimation of hurdle clearance kinematic parameters. The analysis involved 10 image sequences of five hurdlers at various training levels. Recording of the sequences was carried out under simulated starting conditions of a 110 m hurdle race. The parameters were estimated using the particle swarm optimization algorithm and they are based on analysis of the images recorded with a 100 Hz camera. The proposed method does not involve using any special clothes, markers, inertial sensors, etc. As the quality criteria, the mean absolute error and mean relative error were used. The level of computed errors justifies the use of this method to estimate hurdle clearance parameters.  相似文献   
29.
The clearance of mucus through coughing is a complex, multiphase process, which is affected principally by mucus viscosity and airflow velocity; however, it is also critically affected by the thickness of the two layers of mucus—the serous and gel layers—and oscillation level. The present study examines the effects of the latter parameters more closely. To do so, the mucus clearance process is simulated with a transient 3D volume of fluid (VOF) multiphase model in ANSYS Fluent. The model includes mucus’ bilayer properties and a wide range of boundary conditions were tested. The model was analysed in both a straight tube and a realistic trachea. Ultimately, the model was able to both capture air-mucus interface wave evolution and predict the overall behaviour of the clearance process. The results were consistent with experimental clearance data and numerical airflow simulations, which indicates our methodology is appropriate for future studies. Ultimately, the mere presence of the serous layer was found to increase mucus clearance by more than 15 percent. An oscillating flow enhanced clearance by up to 5 percent. Interestingly, interface wave steepness was found to be inversely correlated with mucus thickness, but directly with mucus velocity, which suggests it will be an interesting parameter for further study.  相似文献   
30.
Continuous virus inactivation (VI) remains one of the missing pieces while the biopharma industry moves toward continuous manufacturing. The challenges of adapting VI to the continuous operation are two‐fold: 1) achieving fluid homogeneity and 2) a narrow residence time distribution (RTD) for fluid incubation. To address these challenges, a dynamic active in‐line mixer and a packed‐bed continuous virus inactivation reactor (CVIR) are implemented, which act as a narrow RTD incubation chamber. The developed concept is applied using solvent/detergent (S/D) treatment for inactivation of two commonly used model viruses. The in‐line mixer is characterized and enables mixing of the viscous S/D chemicals to ±1.0% of the target concentration in a small dead volume. The reactor's RTD is characterized and additional control experiments confirm that the VI is due to the S/D action and not induced by system components. The CVIR setup achieves steady state rapidly before two reactor volumes and the logarithmic reduction values of the continuous inactivation process are identical to those obtained by the traditional batch operation. The packed‐bed reactor for continuous VI unites fully continuous processing with very low‐pressure drop and scalability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号