首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1052篇
  免费   58篇
  国内免费   117篇
  2024年   1篇
  2023年   12篇
  2022年   9篇
  2021年   21篇
  2020年   22篇
  2019年   26篇
  2018年   17篇
  2017年   25篇
  2016年   28篇
  2015年   24篇
  2014年   25篇
  2013年   45篇
  2012年   35篇
  2011年   25篇
  2010年   24篇
  2009年   33篇
  2008年   34篇
  2007年   32篇
  2006年   63篇
  2005年   51篇
  2004年   28篇
  2003年   45篇
  2002年   42篇
  2001年   50篇
  2000年   34篇
  1999年   21篇
  1998年   24篇
  1997年   30篇
  1996年   25篇
  1995年   17篇
  1994年   36篇
  1993年   17篇
  1992年   23篇
  1991年   21篇
  1990年   53篇
  1989年   17篇
  1988年   16篇
  1987年   18篇
  1986年   17篇
  1985年   24篇
  1984年   43篇
  1983年   8篇
  1982年   19篇
  1981年   11篇
  1980年   22篇
  1979年   3篇
  1978年   7篇
  1977年   1篇
  1976年   3篇
排序方式: 共有1227条查询结果,搜索用时 15 毫秒
81.
Annual changes of rotifers, copepods, cladocerans, the ciliate Epistylis rotans, and larvae of Dreissena polymorpha were analysed for the period 1908–1990. Though food resources increased 6–10 fold in the course of eutrophication, only rotifers and Epistylis increased accordingly. Probably as a result of increased predation pressure crustaceans increased only twice. The seasonal pattern of metazoans and protozoans (flagellates, sarcodines, ciliates) were analysed for 12 and 3 years, resp. During winter and spring, large heterotrophic flagellates and ciliates dominated the zooplankton and were responsible for a pronounced - formerly underestimated - grazing pressure on phytoplankton. In early summer, metazoan filter-feeders were often able to cause a significant reduction of phyto- and protozooplankton. However, during some years, phytoplankton declined in the absence of a pronounced grazing pressure. Field data and experiments revealed that predators were able to regulate the density of cladocerans in early summer (mainly cyclopoids) and summer (mainly Leptodora, smelt and fish juveniles).  相似文献   
82.
We examined the diel vertical migration (DVM) of zooplankton in three lakes of western New York; Lakes Conesus, Lime, and McCargo. In all three lakes, the dipteran predator Chaoborus was a more dramatic migrator than any of the cladocerans or copepods. In contrast, another invertebrate predator, Leptodora, seemed to have the least vertical dispersal. In Conesus Lake, following the evening ascent and upper-water night-positioning of Chaoborus flavicans, Daphnia pulicaria expanded its own vertical range of dispersal thereby decreasing its degree of overlap with Chaoborus. The vertical distribution of Diaptomus sicilis was mostly below that of Daphnia pulicaria, thus reducing possible competition for food resources. Poor oxygen conditions in the lower waters of Lakes Lime and McCargo restricted all zooplankton (except Chaoborus) to an epilimnetic zone where the regions of niche overlap and predation were narrowed. Such annually-induced restrictions on vertical dispersal are probably common features of numerous stratified lakes with hypolimnetic reducing conditions. No fixed pattern of vertical dispersal or migration is likely in lakes where stratification and non-stratification follow each other seasonally. Vertical migration does provide some flexibility in niche separation, but the potential for chaotic behavior in interacting predators and prey may confound simple explanations of DVM.  相似文献   
83.
Eutrophication of the nature is one of the most relevant problems for the human society today. In comparison to terrestrial and limnological ecosystems, however, the marine environment is affected with some exceptions of coastal waters in a minor degree. On the basis of data from 1976–1988 trend analysis for chlorophyll, primary production, zooplankton biomass and water transparency have been carried out for the Mecklenburg Bight and different areas of the Baltic proper. As expected from the longterm increase in the nutrient levels, also for some pelagic biological variables increasing trends could be observed. At least for chlorophyll they are significant in the 95% probability level for all investigated areas. Primary production shows also an increase, however, not significant for each subarea. For zooplankton nearly no changes could be observed. All data reflect a high interannual variability, which can partly be explained by meteorological and oceanological conditions. The results are discussed from an ecological point of view. The increase in phytoplankton variables is considered to be at least partly related to the eutrophication of the Baltic.  相似文献   
84.
Based on the study of over 500 zooplankton samples collected in Sri Lanka (Ceylon) during 1965–1974, the species composition from different habitats is analysed. The zooplankton assemblage is typically tropical with relatively few species of Cladocera and Copepoda. The Rotifera include a large number of species of the genus Brachionus. The limnetic zooplankton resembles the pond zooplankton closely in that all the eurytopic species found in the different types of habitats, including ponds, also occur in the limnetic zooplankton. The large Cladocera belonging to the genus Daphnia are very rare. In general, large zooplankters are absent. The size composition of the zooplankton has a smaller range than in temperate regions. This is due to the absence of large-sized zooplankton species. The reasons for the differences in species variety and size composition between zooplankton of temperate and tropical regions is perhaps due to a number of factors. These include the effects of high and uniform temperatures, food availability and predation by fish and invertebrates.  相似文献   
85.
A contrast between temperate and tropical Cladocera, Copepoda and Rotifera zooplankton fauna shows a markedly different size composition and species diversity. There are fewer species, and these are generally smaller in the tropics than in either the North or South Temperate Zones. Larger species of the genera Daphnia and Simocephalus are relatively rare in the tropics, while members of Eurycerus and Saycia are absent. Members of the families Holopedidae, Leptodoridae and Polyphemidae increase in abundance toward the temperate regions. Two small cyclopoid copepods are common in tropical zooplankton, while many of the common larger species of other regions are absent or very rare. The chief rotifer components are Keratella tropica and species of Brachionus.  相似文献   
86.
The effects of light regime, feeding regime and tentacle number on the zooplankton feeding capability of Hydra viridis were tested in the laboratory. Feeding was measured by exposing Hydra to a known volume of Artemia salina nauplii and recording the number captured and ingested. In all cases there was a correlation between the number of Artemia captured and the number ingested. H. viridis with 7 tentacles captured and ingested more Artemia than Hydra with 6 tentacles. However, changes in light and/or feeding regimes did not alter the number of tentacles/Hydra. Varying light and feeding regimes altered the number of Zoochlorellae/cell and Hydra growth rate. There was no effect on the number of Artemia captured or ingested and no effect on the percent ingestion of captured Artemia. These data suggest that, under these conditions, zooplankton feeding by H. viridis is independent of nutritional history.  相似文献   
87.
Marazzo  Andrea  Valentin  Jean L. 《Hydrobiologia》2001,445(1-3):133-139
We analysed monthly samples collected in Guanabara Bay, with a conical net of 200 m mesh during 1985. The bay was divided into three areas: an outer region (area A), influenced by oceanic waters; an inner region (area C), influenced by fluvial inflow; and a transition region (area B) with intermediate features. Penilia avirostris and Evadne tergestina were observed in the three areas, with greatest densities, however, in the outermost region, which had the highest salinities and lowest temperatures. Penilia avirostris was more abundant in summer (March), a period with the greatest relative densities of nanoplankton. Evadne tergestina was also abundant in summer, but its peak fell in November, a period with a relative increase in microphytoplankton density in the bay. The two species disappeared in winter: Penilia avirostris was absent from May to August, whereas Evadne tergestina disappeared in August and September.  相似文献   
88.
In the Great Salt Lake of Utah, the brine shrimp Artemia franciscanaKellogg is an important food resource for birds and they produce dormant cysts that are harvested and used extensively in the aquaculture industry. We analyzed the limnological factors controlling Artemia growth and cyst production over 12 months in 1994 and 1995. Laboratory experiments showed that inter-brood intervals were highly dependent on temperature and slightly on food level. At optimal temperatures and nutritious food, juveniles reached reproductive size within 7 d in the laboratory. In winter when temperatures were less than 3 °C, Artemia were absent from the lake, phytoplankton abundance was high (13 Chl a g l–1), and the dominant grazers were ciliated protozoans. In the spring, cysts hatched when phytoplankton was abundant (15–30 g Chl a l–1), and the Artemia grew and produced large clutches of ovoviviparous eggs. Estimated naupliar production from these eggs was 80 l–1 from April to May. Despite the high production of nauplii, Artemia densities declined to 8 l–1by June and the growing shrimp population grazed down the phytoplankton resource to <1 g Chl a l–1. With the depleted phytoplankton food resource during the summer, Artemia growth slowed, lipid indices decreased, clutch sizes declined, and females switched primarily to oviparous cyst production. During the summer, there was limited production of ovoviviparous eggs, and limited recruitment of juveniles, probably due to low food. Although oviparous reproduction began in June, more than 90% of the cysts were produced after July when female densities had declined to 1.5 l–1, but nearly all of them were producing cysts. Estimated cyst production was 650000 m–2, or 4.54 × 106 kg dry weight for the entire lake. The reported commercial harvest took 21% of the 1994 cyst production. That harvest had little impact on the subsequent year's population, as Artemia densities were ultimately controlled by algal production in the lake.  相似文献   
89.
It has long been known that polyploid organisms are more prevalent in arctic than in temperate environments. Past explanations for this geographical trend have focused on the role of glacial cycles in generating polyploids and the influence of abiotic factors in favouring polyploidy in the north. In combination, these mechanisms probably suffice to explain the observed geographical cline in ploidy levels in members of the Daphnia pulex complex in the Holarctic. While only diploid members of the D. pulex complex are found in the temperate regions of North America and Europe, allozyme and DNA quantification analyses indicate that the southern Argentine pulex-complex fauna is dominated by polyploids. Indeed, the present study is the first to document the presence of polyploid members of the D. pulex complex in any temperate climate. The results of phylogeographic analyses suggest that this difference in polyploid distribution between the northern and southern hemispheres is based more on ecological and historical contingencies than direct selection for polyploidy. Specifically, competition with diploid relatives probably limits the lower latitudinal range of polyploids in the north, but appears not to have occurred in Argentina. Because of these differences, the present study provides important insights into the diverse factors that determine the distributions and evolutionary fates of polyploid organisms.  相似文献   
90.
Sarma  S. S. S.  Nandini  S. 《Hydrobiologia》2002,486(1):169-174
Freshwater cladocerans and rotifers were used as prey to study functional response and prey selection by adult females of Chirocephalus diaphanus under laboratory conditions. For functional response studies, we offered three rotifer species (Brachionus calyciflorus, B. patulus and Euchlanis dilatata) and three cladoceran species (Alona rectangula, Ceriodaphnia dubia and Moina macrocopa) at various densities ranging from 0.5 to 16 ind. ml–1. We found increased zooplankton consumption with increasing prey density but beyond 4 ind ml–1 cladocerans and 8 ind. ml–1 rotifers, the number of animals eaten plateaued. In general, C. diaphanus consumed fewer large prey (cladocerans) and many more smaller zooplankton (rotifers). For prey selection experiments, we used B. calyciflrous, B. patulus, C. dubia and M. macrocopa, offered at the ratio of two rotifers: one cladoceran and at three prey densities (total zooplankton numbers: 3, 6 and 12 ind. ml–1). Prey selectivity patterns followed the functional response trends. In general, regardless of prey types, with an increase in the available zooplankton, there was an increase in the number of prey consumed. At any given prey density, C. diaphanus consumed higher numbers of rotifers than cladocerans. Among the prey offered, B. patulus and M. macrocopa were positively selected. Results are discussed in light of possible control of zooplankton by anostracans in temporary ponds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号