首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1406篇
  免费   76篇
  国内免费   39篇
  2024年   3篇
  2023年   26篇
  2022年   40篇
  2021年   45篇
  2020年   39篇
  2019年   23篇
  2018年   37篇
  2017年   31篇
  2016年   37篇
  2015年   31篇
  2014年   40篇
  2013年   81篇
  2012年   33篇
  2011年   31篇
  2010年   34篇
  2009年   52篇
  2008年   68篇
  2007年   63篇
  2006年   47篇
  2005年   45篇
  2004年   63篇
  2003年   42篇
  2002年   52篇
  2001年   36篇
  2000年   47篇
  1999年   45篇
  1998年   46篇
  1997年   30篇
  1996年   32篇
  1995年   26篇
  1994年   22篇
  1993年   29篇
  1992年   26篇
  1991年   28篇
  1990年   15篇
  1989年   15篇
  1988年   30篇
  1987年   11篇
  1986年   16篇
  1985年   19篇
  1984年   15篇
  1983年   6篇
  1982年   9篇
  1981年   9篇
  1980年   16篇
  1979年   8篇
  1978年   4篇
  1977年   7篇
  1976年   5篇
  1973年   4篇
排序方式: 共有1521条查询结果,搜索用时 31 毫秒
151.
Complete sequence determination of the brachiopod Lingula anatina mtDNA (28,818 bp) revealed an organization that is remarkably atypical for an animal mt-genome. In addition to the usual set of 37 animal mitochondrial genes, which make up only 57% (16,555 bp) of the entire sequence, the genome contains lengthy unassigned sequences. All the genes are encoded in the same DNA strand, generally in a compact way, whereas the overall gene order is highly divergent in comparison with known animal mtDNA. Individual genes are generally longer and deviate considerably in sequence from their homologues in other animals. The genome contains two major repeat regions, in which 11 units of unassigned sequences and six genes (atp8, trnM, trnQ, trnV, and part of cox2 and nad2) are found in repetition, in the form of nested direct repeats of unparalleled complexity. One of the repeat regions contains unassigned repeat units dispersed among several unique sequences, novel repetitive structure for animal mtDNAs. Each of those unique sequences contains an open reading frame for a polypeptide between 80 and 357 amino acids long, potentially encoding a functional molecule, but none of them has been identified with known proteins. In both repeat regions, tRNA genes or tRNA gene-like sequences flank major repeated units, supporting the view that those structures play a role in the mitochondrial gene rearrangements. Although the intricate repeated organization of this genome can be explained by recurrent tandem duplications and subsequent deletions mediated by replication errors, other mechanisms, such as nonhomologous recombinations, appear to explain certain structures more easily.  相似文献   
152.
153.
Nearest neighbor analysis of immunocytolocalization experiments indicates that the enzymes glyceraldehyde-3-P dehydrogenase, triose-P isomerase and aldolase are located close to one another in the pea leaf chloroplast stroma, and that aldolase is located close to sedoheptulose bisphosphatase. Direct transfer of the triose phosphates between glyceraldehyde-3-P dehydrogenase and triose-P isomerase, and from glyceraldehyde-3-P dehydrogenase and triose-P isomerase to aldolase, is then a possibility, as is direct transfer of sedoheptulose bisphosphate from aldolase to sedoheptulose bisphosphatase. Spatial organization of these enzymes may be important for efficient CO2 fixation in photosynthetic organisms. In contrast, there is no indication that fructose bisphosphatase is co-localized with aldolase, and direct transfer of fructose bisphosphate from aldolase to fructose bisphosphatase seems unlikely.  相似文献   
154.
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.  相似文献   
155.
The interaction of L-arginine with unilamellar liposomes of dihexadecylphosphate sodium salt (DHP-Na) has been investigated using calorimetric, light scattering, fluorescence spectroscopy and zeta-potential techniques. Heating from room temperature, the bilayer exhibits a phase transition from a subgel (L(c)) to the gel (L(beta')) phase as well as a pre-transition (L(beta')-P(beta')), which is followed by the main lipid phase transition (P(beta')-L(alpha)). Direct studies of the interaction of L-arginine with the DHP-Na bilayers via isothermal titration calorimetry at 27 degrees C depict significant differences between samples in the L(c) and the L(beta') phases reflecting the effect of molecular organization of the lipids upon the interaction. While L-arginine has only a small impact upon the L(c) to L(beta') phase transition, it affects more significantly the transition temperature as well as the shape of the DSC peaks of the main lipid phase transition. Based on fluorescence and zeta-potential studies, the permeability of L-arginine through the liposomal membrane is higher within the temperature range of the main lipid phase transition. Encapsulated l-arginine obstructs the formation of the subgel phase.  相似文献   
156.
We previously showed using a fluorescent analogue of cholesterol (NBD-cholesterol, or 25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol), that cholesterol may exhibit local organization at low concentrations in membranes by the formation of transbilayer tail-to-tail dimers of cholesterol (Rukmini, R., Rawat, S.S., Biswas, S.C., Chattopadhyay, A., 2001. Biophys. J. 81, 2122-2134). In this report, we have monitored the microenvironmental features of cholesterol monomers and dimers utilizing wavelength-selective fluorescence spectroscopy. Our results utilizing red edge excitation shift (REES) and wavelength-dependent change in fluorescence anisotropy show that the microenvironment around the NBD moieties in the dimer form is more rigid possibly due to steric constraints imposed by the dimer conformation. These results provide new information and are relevant in understanding the organization of cholesterol in membranes at low concentrations.  相似文献   
157.
Specific chromosomal translocations are hallmarks of many human leukemias. The basis for these translocation events is poorly understood, but it has been assumed that spatial positioning of genes in the nucleus of hematopoietic cells is a contributing factor. Analysis of the nuclear 3D position of the gene MLL, frequently involved in chromosomal translocations and five of its translocation partners (AF4, AF6, AF9, ENL and ELL), and two control loci revealed a characteristic radial distribution pattern in all hematopoietic cells studied. Genes in areas of high local gene density were found positioned towards the nuclear center, whereas genes in regions of low gene density were detected closer to the nuclear periphery. The gene density within a 2 Mbp window was found to be a better predictor for the relative positioning of a genomic locus within the cell nucleus than the gene density of entire chromosomes. Analysis of the position of MLL, AF4, AF6 and AF9 in cell lines carrying chromosomal translocations involving these genes revealed that the position of the normal genes was different from that of the fusion genes, and this was again consistent with the changes in local gene density within a 2 Mbp window. Thus, alterations in gene density directly at translocation junctions could explain the change in the position of affected genes in leukemia cells.  相似文献   
158.
Much work has been done to further our understanding of the mechanisms that underlie the diversity of primate social organizations, but none has addressed the limits to that diversity or the question of what causes species to either form or not form social networks. The fact that all living primates typically live in social networks makes it highly likely that the last common ancestor of living primates already lived in social networks, and that sociality formed an integral part of the adaptive nature of primate origins. A characterization of primate sociality within the wider mammalian context is therefore essential to further our understanding of the adaptive nature of primate origins. Here we determine correlates of sociality and nonsociality in rodents as a model to infer causes of sociality in primates. We found sociality to be most strongly associated with large-bodied arboreal species that include a significant portion of fruit in their diet. Fruits and other plant products, such as flowers, seeds, and young leaves, are patchily distributed in time and space and are therefore difficult to find. These food resources are, however, predictable and dependable when their location is known. Hence, membership in a social unit can maximize food exploitation if information on feeding sites is shared. Whether sociality evolved in the primate stem lineage or whether it was already present earlier in the evolution of Euarchontoglires remains uncertain, although tentative evidence points to the former scenario. In either case, frugivory is likely to have played an important role in maintaining the presence of a social lifestyle throughout primate evolution.  相似文献   
159.
160.
It has been known that the transverse orientation of cortical microtubules (MTs) along the elongation axis is essential for normal cell morphogenesis, but whether cortical MTs are essential for normal cell wall synthesis is still not clear. In the present study, we have investigated whether cortical MTs affect cell wall synthesis by direct alteration of the cortical MT organization in Arabidopsis thaliana. Disruption of the cortical MT organization by expression of an excess amount of green fluorescent protein-tagged a-tubulin 6 (GFP-TUA6) in transgenic Arabidopsis plants was found to cause a marked reduction in cell wall thickness and a de- crease in the cell wall sugars glucose and xylose. Concomitantly, the stem strength of the GFP-TUA6 overexpressors was markedly reduced compared with the wild type. In addition, expression of excess GFP- TUA6 results in an alteration in cell morphogenesis and a severe effect on plant growth and development. Together, these results suggest that the proper organization of cortical MTs is essential for the normal synthesis of plant cell walls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号