首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2288篇
  免费   187篇
  国内免费   126篇
  2024年   16篇
  2023年   79篇
  2022年   115篇
  2021年   321篇
  2020年   360篇
  2019年   618篇
  2018年   123篇
  2017年   81篇
  2016年   65篇
  2015年   83篇
  2014年   216篇
  2013年   189篇
  2012年   84篇
  2011年   69篇
  2010年   52篇
  2009年   37篇
  2008年   20篇
  2007年   12篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有2601条查询结果,搜索用时 78 毫秒
111.
Single-nucleotide polymorphism (SNP) in long noncoding RNAs (lncRNAs) is known to disrupt the binding between lncRNAs and microRNAs. In this paper, we aimed to explore the role of LINC00673 rs11655237 SNP in the survival of cervical cancer (CC). Real-time polymerase chain reaction and western-blot analysis were used to detect expressions of LINC00673 and microRNA-1231 (miR-1231) in CC patients with different rs11655237 SNP genotypes. And the expression of LINC00673, miR-1231, and IFNAR1 was measured in mice and cells treated with exosomes carrying GG, GA, and AA rs11655237 genotypes. Compared with patients carrying the rs11655237 A allele of LINC00673 rs11655237 SNP, patients carrying the G allele showed higher overall survival and higher miR-1231 expression. In addition, the expression of miR-1231 was the highest in patients carrying the GG genotype and the lowest in patients carrying the AA genotype. Furthermore, the exosomes carrying GG, GA, and AA genotypes of LINC00673 rs11655237 SNP reduced tumor growth in mice, while the inhibitory effect of rs11655237 A allele was much stronger than that of the rs11655237 G allele. Additionally, exosome treatment upregulated the expression of LINC000673 and IFNAR1 while downregulating the expression of miR-1231. Interestingly, the A allele of rs11655237 generated a binding site for miR-1231 and subsequently affected the expression of IFNAR1, a target gene of miR-1231 containing a miR-1231 binding site in its 3′-untranslated region. Cells transfected with exosomes carrying GG, GA, and AA genotypes of LINC00673 rs11655237 SNP achieved higher LINC000673 and IFNAR1 expression along with lower miR-1231 expression. Therefore, rs11655237 can be used as a prognostic biomarker for CC.  相似文献   
112.
113.
The inflammatory microenvironment in the joints is one of the critical issues during osteoarthritis (OA) and also the main factor that may aggravate symptoms. Under inflammatory microenvironment, M1 macrophages are activated and produce large numbers of proinflammatory mediators, leading to the production of degradative enzymes, the disturbance of chondrocyte apoptosis and cartilage catabolic processes, and finally the deterioration of OA. In the present study, we reveal that the overexpression of osteopontin (OPN), a cytokine, and a matrix protein involved in arthritis and chondrocyte apoptosis in OA, could exacerbate the inflammatory microenvironment in OA via promoting the production of proinflammation cytokines and the levels of degradative enzymes in M1 macrophages, therefore, enhancing the cytotoxicity of M1 macrophage on chondrocytes. XIST expression significantly increases in OA tissue specimens. XIST serves as a competing endogenous RNA for miR-376c-5p to compete with OPN for miR-376c-5p binding, thus counteracting miR-376c-5p-mediated OPN suppression. XIST knockdown could improve the inflammatory microenvironment in OA via acting on M1 macrophages, subsequently affecting the apoptosis of cocultured chondrocytes. miR-376c-5p inhibition exerts an opposing effect on M1 macrophages and cocultured chondrocytes, as well as significantly reverses the effect of XIST knockdown. As a further confirmation, XIST and OPN mRNA expression significantly increased in OA tissues and was positively correlated in tissue samples. In summary, we provide a novel mechanism of macrophages and the inflammatory microenvironment affecting chondrocyte apoptosis. XIST and OPN might be potential targets for OA treatment, which needs further in vivo experimental confirmation.  相似文献   
114.
Breast cancer is a common malignancy that is highly lethal with poor survival rates and immature therapeutics that urgently needs more effective and efficient therapies. MicroRNAs are intrinsically involved in different cancer remedies, but their mechanism in breast cancer has not been elucidated for prospective treatment. The function and mechanism of microRNA-188-5p (miR-188) have not been thoroughly investigated in breast cancer. In our study, we found that the expression of miR-188 in breast cancer tissues was obviously reduced. Our findings also revealed the abnormal overexpression of miR-188 in 4T1 and MCF-7 cells significantly suppressed cell proliferation and migration and also enhanced apoptosis. miR-188 induced cell cycle arrest in the G1 phase. To illuminate the molecular mechanism of miR-188, Rap2c was screened as a single target gene by bioinformatics database analysis and was further confirmed by dual-luciferase assay. Moreover, Rap2c was found to be a vital molecular switch for the mitogen-activated protein kinase signaling pathway in tumor progression by decreasing apoptosis and promoting proliferation and migration. In conclusion, our results revealed that miR-188 is a cancer progression suppressor and a promising future target for breast cancer therapy.  相似文献   
115.
miR-222 participates in many cardiovascular diseases, but its effect on cardiac remodeling induced by diabetes is unclear. This study evaluated the functional role of miR-222 in cardiac fibrosis in diabetic mice. Streptozotocin (STZ) was used to establish a type 1 diabetic mouse model. After 10 weeks of STZ injection, mice were intravenously injected with Ad-miR-222 to induce the overexpression of miR-222. miR-222 overexpression reduced cardiac fibrosis and improved cardiac function in diabetic mice. Mechanistically, miR-222 inhibited the endothelium to mesenchymal transition (EndMT) in diabetic mouse hearts. Mouse heart fibroblasts and endothelial cells were isolated and cultured with high glucose (HG). An miR-222 mimic did not affect HG-induced fibroblast activation and function but did suppress the HG-induced EndMT process. The antagonism of miR-222 by antagomir inhibited HG-induced EndMT. miR-222 regulated the promoter region of β-catenin, thus negatively regulating the Wnt/β-catenin pathway, which was confirmed by β-catenin siRNA. Taken together, our results indicated that miR-222 inhibited cardiac fibrosis in diabetic mice via negatively regulating Wnt/β-catenin-mediated EndMT.  相似文献   
116.
117.
Long noncoding RNAs (lncRNAs) have been shown to have critical regulatory roles in tumorigenesis. lncRNA LINC01561 (LINC01561) is a newly identified tumor-related lncRNA and its dysregulation has been demonstrated in several tumors. However, whether LINC01561 is involved in the progression of non-small-cell lung carcinoma (NSCLC) and its underlying mechanisms remain unknown. In this study, we first provided evidence that LINC01561 expressions were distinctly upregulated in NSCLC tissues and cell lines. Combining with bioinformatics assays and mechanism experiments, our group demonstrated that LINC01561 was activated by SOX2 in NSCLC. Clinical research revealed that upregulation of LINC01561 was related to poorer clinicopathologic features and shorter survival time. Functionally, suppression of LINC01561 exhibited tumor-suppressive functions through impairing cell proliferation, migration, and invasion as well as inducing apoptosis. Moreover, we verified that LINC01561 could directly bind to miR-760, isolating miR-760 from its target gene SHC SH2 domain-binding protein 1 (SHCBP1). We also found that SHCBP1 was lowly expressed in NSCLC and served as a tumor promoter. A functional study indicated that LINC01561 regulated SHCBP1 expression by competitively binding to miR-760. In summary, our findings indicated that SOX2-induced overexpression of LINC01561 promoted the proliferation and metastasis by acting as a competing endogenous RNA to modulate SHCBP1 by sponging miR-760.  相似文献   
118.
119.
120.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号