首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3891篇
  免费   196篇
  国内免费   268篇
  2023年   38篇
  2022年   53篇
  2021年   123篇
  2020年   83篇
  2019年   83篇
  2018年   93篇
  2017年   75篇
  2016年   73篇
  2015年   105篇
  2014年   190篇
  2013年   264篇
  2012年   186篇
  2011年   142篇
  2010年   123篇
  2009年   163篇
  2008年   152篇
  2007年   168篇
  2006年   200篇
  2005年   162篇
  2004年   153篇
  2003年   169篇
  2002年   171篇
  2001年   161篇
  2000年   153篇
  1999年   102篇
  1998年   108篇
  1997年   87篇
  1996年   93篇
  1995年   76篇
  1994年   64篇
  1993年   59篇
  1992年   56篇
  1991年   38篇
  1990年   44篇
  1989年   42篇
  1988年   40篇
  1987年   45篇
  1986年   21篇
  1985年   21篇
  1984年   37篇
  1983年   12篇
  1982年   17篇
  1981年   23篇
  1980年   17篇
  1979年   23篇
  1978年   18篇
  1977年   9篇
  1976年   6篇
  1974年   4篇
  1972年   3篇
排序方式: 共有4355条查询结果,搜索用时 974 毫秒
161.
162.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   
163.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   
164.
We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region.  相似文献   
165.
Ambiguous genitalia or disorder of the sexual development is a birth defect where the external genitals do not have the typical appearance of either a male or female. Here we report a boy with ambiguous genitalia and short stature. The cytogenetic analysis by G-banding revealed a small Y chromosome and an additional material on the 15p arm. Further, molecular cytogenetic analysis by Fluorescence in situ hybridization (FISH) using whole chromosome paint probes showed the presence of Y sequences on the 15p arm, confirming that it is a Y;15 translocation. Subsequent, FISH with centromere probe Y showed two signals depicting the presence of two centromeres and differing with a balanced translocation. The dicentric nature of the derivative 15 chromosome was confirmed by FISH with both 15 and Y centromeric probes. Further, the delineation of the Y chromosomal DNA was also done by quantitative real time PCR. Additional Y-short tandem repeat typing was performed to find out the extent of deletion on small Y chromosome. Fine mapping was carried out with 8 Y specific BAC clones which helped in defining the breakpoint regions. MLPA was performed to check the presence or absence of subtelomeric regions and SHOX regions on Y. Finally array CGH helped us in confirming the breakpoint regions. In our study we identified and characterized a novel complex Y chromosomal rearrangement with a complete deletion of the Yq region and duplication of the Yp region with one copy being translocated onto the15p arm. This is the first report of novel and unique Y complex rearrangement showing a deletion, duplication and a translocation in the same patient. The possible mechanism of the rearrangement and the phenotype–genotype correlation are discussed.  相似文献   
166.
167.
Complex chromosomal rearrangements are very rare chromosomal abnormalities. Individuals with a complex chromosomal rearrangement can be phenotypically normal or display a clinical abnormality. It is believed that these abnormalities are due to either microdeletions or microduplications at the translocation breakpoints or as a result of disruption of the genes located in the breakpoints. In this study we describe a 2-year-old child with mental retardation and developmental delay in whom a de novo apparently balanced exceptional complex chromosomal rearrangement was found through conventional cytogenetic analysis. Using both cytogenetic and FISH analysis, the patient's karyotype was found to be: 46,XY,der(5)t(5;7)(p15.1;7q34),t(5;8)(q13.1;8q24.1)dn. A large, clinically significant deletion which encompassed 887.69 kb was detected at the 5q12.1–5q12.3 (chr5:62.886.523–63.774.210) genomic region using array-CGH. This deleted region includes the HTR1A and RNF180 genes. This is the first report of an individual with an apparently balanced complex chromosomal rearrangement in conjunction with a microdeletion at 5q12.1–5q12.3 in which there are both mental-motor retardation and dysmorphia.  相似文献   
168.
We present prenatal diagnosis and array comparative genomic hybridization characterization of 3q26.31–q29 duplication and 9q34.3 microdeletion in a fetus with omphalocele, ventricular septal defect, increased nuchal translucency, abnormal first-trimester maternal screening and facial dysmorphism with distinct features of the 3q duplication syndrome and Kleefstra syndrome. The 26.61-Mb duplication of 3q26.31–q29 encompasses EPHB3, CLDN1 and CLDN16, and the 972-kb deletion of 9q34.3 encompasses EHMT1. We review the literature of partial trisomy 3q associated with omphalocele and discuss the genotype–phenotype correlation in this case.  相似文献   
169.
Mouse chromosomes, with the exception of the Y chromosome, are telocentric. The telomere at the p-arm is separated from the centromere by the tL1 sequence and TLC tandem repeats. A previous report showed that the TLC array was also conserved in other strains of the subgenus Mus. These results suggest that the TLC arrays promote the stable evolutionary maintenance of a telocentric karyotype in the subgenus Mus. In this study, we investigated the degree of conservation of TLC arrays among a variety of wild-derived inbred strains, all of which are descendants of wild mice captured in several areas of the world. Genomic PCR analysis indicates that the sequential order of telomere-tL1 is highly conserved in all strains, whereas tL1-TLC is not. Next, Southern blot analysis of DNAs isolated from a panel of mouse subspecies showed both Mus musculus domesticus and Mus musculus castaneus subspecies possess TLC arrays. Unexpectedly, this repeat appears to be lost in almost all Mus musculus musculus and Mus musculus molossinus subspecies, which show a clear geographic divide. These results indicate that either other unknown sequences were replaced by the TLC repeat or almost all M. m. musculus and M. m. molossinus subspecies do not have any sequence between the telomere and minor satellites. Our observation suggests that the TLC array might be evolutionarily unstable and not essential for murine chromosomal conformation. This is the first example of the subspecies-specific large genome alterations in mice.  相似文献   
170.
Recently discovered strong nucleosomes (SNs) are characterized by strongly periodical DNA sequence, with visible rather than hidden sequence periodicity. In a quest for possible functions of the SNs, it has been found that the SNs concentrate within centromere regions of A. thaliana chromosomes . They, however, have been detected in Caenorhabditis elegans as well, although the holocentric chromosomes of this species do not have centromeres. Scrutinizing the SNs of C. elegans and their distributions along the DNA sequences of the chromosomes, we have discovered that the SNs are located mainly at the ends of the chromosomes of C. elegans. This suggests that, perhaps, the ends of the chromosomes fulfill some function(s) of centromeres in this species, as also indicated by the cytogenetic studies on meiotic chromosomes in spermatocytes of C. elegans, where the end-to-end association is observed. The centromeric involvement of the SNs, also found in A. thaliana, opens new horizons for the chromosome and centromere structure studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号