首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4598篇
  免费   280篇
  国内免费   296篇
  2023年   45篇
  2022年   69篇
  2021年   138篇
  2020年   105篇
  2019年   96篇
  2018年   106篇
  2017年   96篇
  2016年   82篇
  2015年   123篇
  2014年   238篇
  2013年   317篇
  2012年   226篇
  2011年   170篇
  2010年   147篇
  2009年   197篇
  2008年   206篇
  2007年   210篇
  2006年   242篇
  2005年   216篇
  2004年   204篇
  2003年   207篇
  2002年   211篇
  2001年   182篇
  2000年   171篇
  1999年   116篇
  1998年   122篇
  1997年   103篇
  1996年   101篇
  1995年   98篇
  1994年   73篇
  1993年   68篇
  1992年   61篇
  1991年   41篇
  1990年   46篇
  1989年   41篇
  1988年   41篇
  1987年   44篇
  1986年   23篇
  1985年   24篇
  1984年   37篇
  1983年   11篇
  1982年   16篇
  1981年   20篇
  1980年   17篇
  1979年   21篇
  1978年   17篇
  1977年   9篇
  1976年   6篇
  1974年   4篇
  1972年   3篇
排序方式: 共有5174条查询结果,搜索用时 31 毫秒
61.
Paternal genome loss (PGL) during early embryogenesis is caused by two different genetic elements in the parasitoid wasp, Nasonia vitripennis. Paternal sex ratio (PSR) is a paternally inherited supernumerary chromosome that disrupts condensation of the paternal chromosomes by the first mitotic division of fertilized eggs. Bacteria belonging to the genus Wolbachia are present in Nasonia eggs and also disrupt paternal chromosome condensation in crosses between cytoplasmically incompatible strains. Cytoplasmic incompatibility Wolbachia are widespread in insects, whereas PSR is specific to this wasp. PGL results in production of male progeny in Nasonia due to haplodiploid sex determination. The cytological events associated with PGL induced by the PSR chromosome and by Wolbachia were compared by fluorescent light microscopy using the fluorochrome Hoescht 33258. Cytological examination of eggs fertilized with PSR-bearing sperm revealed that a dense paternal chromatin mass forms prior to the first metaphase. Quantification of chromatin by epifluorescence indicates that this mass does undergo replication along with the maternal chromatin prior to the first mitotic division but does not replicate during later mitotic cycles. Contrary to previous reports using other staining methods, the paternal chromatin mass remains condensed during interphase and persists over subsequent mitotic cycles, at least until formation of the syncytial blastoderm and cellularization, at which time it remains near the center of the egg with the yolk nuclei. Wolbachia-induced PGL shows several marked differences. Most notable is that the paternal chromatin mass is more diffuse and tends to be fragmented during the first mitotic division, with portions becoming associated with the daughter nuclei. Nuclei containing portions of the paternal chromatin mass appear to be delayed in subsequent mitotic divisions relative to nuclei free of paternal chromatin. Crosses combining incompatibility with PSR were cytologically similar to Wolbachia-induced PGL, although shearing of the paternal chromatin mass was reduced. Wolbachia may, therefore, block an earlier stage of paternal chromatin processing in the fertilized eggs than does PSR. © 1995 Wiley-Liss, Inc.  相似文献   
62.
Most ofthe human Not I linking clones identified to date areconsidered to be derived from CpG islands because ofthe recognitionsequence of this enzyme, and CpG islands have been reportedto be located around the 5' regions of genes. As a pilot study,we determined the complete nucleotide sequence (41,924 bp) ofa human cosmid clone (LL21NC02Q7A10) containing the marker D21S246originating from a Not I linking clone. As a result of sequenceanalysis, we successfully mapped and revealed the genomic genestructure for KIAA0002 previously reported as a cDNA clone.This gene consists of 15 exons and was shown to exist at theD21S246 locus on human chromosome 21q21.3–q22.1. Theseresults demonstrated that genomic marker-anchored DNA sequencingis a useful approach for the human genome project.  相似文献   
63.
A genetic locus controlling the electrophoretic mobility of a methylglyoxal dehydrogenase (EC 1.2.1.23) in the rat is described. The locus, designatedMgd1, is expressed in liver and kidney. Inbred rat strains have fixed either alleleMgd1 a or alleleMgd1 b . Codominant expression is observed in heterozygotes, providing evidence for a tetrameric enzyme structure. Backcross progenies showed the expected 1:1 segregation ratio, and there is evidence thatMgd1 is linked toPep3 andFh1 on chromosome 13. There is also evidence for two additional methylglyoxal dehydrogenases:Mgd2, present in liver and kidney, andMgd3, present only in heart.Supported by the Deutsche Forschungsgemeinschaft (Grant Be 352/18-1).  相似文献   
64.
How to sample alignments from their posterior probability distribution given two strings is shown. This is extended to sampling alignments of more than two strings. The result is first applied to the estimation of the edges of a given evolutionary tree over several strings. Second, when used in conjunction with simulated annealing, it gives a stochastic search method for an optimal multiple alignment.Correspondence to: L. Allison  相似文献   
65.
Nine newly described single-copy and lowcopy-number genomic DNA sequences isolated from a flow-sorted human Y chromosome library were mapped to regions of the human Y chromosome and were hybridized to Southern blots of male and female great ape genomic DNAs (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). Eight of the nine sequences mapped to the euchromatic Y long arm (Yq) in humans, and the ninth mapped to the short arm or pericentromeric region. All nine of the newly identified sequences and two additional human Yq sequences hybridized to restriction fragments in male but not female genomic DNA from the great apes, indicating Y chromosome localization. Seven of these 11 human Yq sequences hybridized to similarly-sized restriction endonuclease fragments in all the great ape species analyzed. The five human sequences that mapped to the most distal subregion of Yq (deletion of which region is associated with spermatogenic failure in humans) were hybridized to Southern blots generated by pulsed-field gel electrophoresis. These sequences define a region of approximately 1 Mb on human Yq in which HpaII tiny fragment (HTF) islands appear to be absent. The conservation of these human Yq sequences on great ape Y chromosomes indicates a greater stability in this region of the Y than has been previously described for most anonymous human Y chromosomal sequences. The stability of these sequences on great ape Y chromosomes seems remarkable given that this region of the Y does not undergo meiotic recombination and the sequences do not appear to encode genes for which positive selection might occur. Correspondence to: B. Steele Allen  相似文献   
66.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   
67.
Cells in the root meristem are organised in longitudinal files. Repeated transverse cell divisions in these files are the prime cause of root growth. Because of the orientation of the cell divisions, we expected to find mitoses with an spindle axis parallel to the file axis. However, we observed in the root cortex ofVicia faba large number of oblique chromosome orientations. From metaphase to telophase there was a dramatic increase of the rotation of the spindle axis. Measurements of both the size of the cortex cells and the chromosome configurations indicated that most cells were too small for an orientation of the spindle parallel to the file axis. Space limitation force the spindle into an oblique position. Despite this spindle axis rotation, most daughter cells remained within the original cell file. Only in extremely flat cells did the position of the daughter nuclei forced the cell to set a plane of division parallel to the file axis, which result in side-by-side orientation of the daughter cells. Telophase spindle axis rotations are also observed inCrepis capillaris andPetunia hybrida.. These species have respectively medium and small sized chromosomes compared toVicia. Since space limitation, which causes the rotation, depends both on cell and chromosome size, the frequency and extent of the phenomenon in former two species is comparatively low.  相似文献   
68.
69.
The purpose of our study was the application of non-isotopic in situ hybridization with chromosome-specific repetitive DNA probes for the determination of cytogenetically aberrant cells in routine cytological materials, such as cervical smears and breast tumour aspirates. Hyperdiploid cells in fine needle aspirates (FNA) of breast tumours could be visualized by in situ hybridization with a chromosome l-specific repetitive DNA probe. However, for the evaluation of a specific cell type in heterogeneous cell populations, i.e. cervical smears, a procedure combining immunocytochemistry and in situ hybridization can be required. Therefore, we developed a combination protocol using β-galactosidase/ ferri-ferrocyanide (blue-green) for immunocytochemistry and peroxidase/DAB (brown-black) for detection of the DNA probe. the described protocol enabled us to distinguish squamous epithelial cells within heterogeneous cell populations. By combining the chromosome 1 DNA probe with a specific cytokeratin marker it was possible to identify the chromosomal abnormal cells within cervical smears.  相似文献   
70.
Characterization of the human glucagon-receptor-encoding gene (GGR) should provide a greater understanding of blood glucose regulation and may reveal a genetic basis for the pathogenesis of diabetes. A cDNA encoding a complete functional human glucagon receptor (GGR) was isolated from a liver cDNA library by a combination of polymerase chain reaction and colony hybridization. The cDNA encodes a receptor protein with 80% identity to rat GGR that binds [125I] glucagon and transduces a signal leading to increases in the concentration of intracellular cyclic adenosine 3′,5′-monophosphate. Southern blot analysis of human DNA reveals a hybridization pattern consistent with a single GGR locus. In situ hybridization to metaphase chromosome preparations maps the GGR locus to chromosome 17q25. Analysis of the genomic sequence shows that the coding region spans over 5.5 kb and is interrupted by 12 introns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号