首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2491篇
  免费   95篇
  国内免费   166篇
  2023年   19篇
  2022年   22篇
  2021年   25篇
  2020年   40篇
  2019年   59篇
  2018年   49篇
  2017年   45篇
  2016年   56篇
  2015年   62篇
  2014年   60篇
  2013年   121篇
  2012年   50篇
  2011年   74篇
  2010年   46篇
  2009年   89篇
  2008年   74篇
  2007年   93篇
  2006年   102篇
  2005年   123篇
  2004年   95篇
  2003年   102篇
  2002年   97篇
  2001年   81篇
  2000年   83篇
  1999年   62篇
  1998年   76篇
  1997年   58篇
  1996年   66篇
  1995年   70篇
  1994年   73篇
  1993年   75篇
  1992年   71篇
  1991年   47篇
  1990年   69篇
  1989年   58篇
  1988年   53篇
  1987年   46篇
  1986年   38篇
  1985年   35篇
  1984年   42篇
  1983年   23篇
  1982年   25篇
  1981年   24篇
  1980年   19篇
  1979年   8篇
  1978年   15篇
  1977年   11篇
  1976年   6篇
  1975年   6篇
  1974年   3篇
排序方式: 共有2752条查询结果,搜索用时 906 毫秒
81.
Interactions of polyamines and nitrogen nutrition in plants   总被引:4,自引:0,他引:4  
Biogenic amines occupy an important position among the many nitrogenous plant compounds. Polyamines are part of the overall metabolism of nitrogenous compounds, yet they do not seem to function in the 'normal' nitrogen nutrition. Rather, these widespread polycations (e. g. putrescine, spermidine and spermine) are involved in the regulation of growth and stress, probably by binding to negatively charged macromolecules. In addition, some diamines and polyamines are metabolized to yield 'secondary 'metabolites such as nicotine and other alkaloids. Previous studies have indicated that the ratio of nitrate to ammonium nutrition affects polyamine biosynthesis and content in intact plants. Thus, an increase in putrescine accumulation was found under conditions of excess ammonium ions, relative to nitrate. Modifications of nitrogen sources in the culture medium of tobacco cell suspensions (depletion of ammonium nitrate, or potassium nitrate, or both) resulted in marked changes in the content of cellular free polyamines. Considerable changes in the content of specific polyamines were also found with exposure to specific inhibitors of polyamine biosynthesis (difluoromethyl ornithine, difluoromethyl arginine, cyclohexylamine, methylglyoxal-bis-guanylhydrazone). However, a combination of nitrogen depletion of the medium and some inhibitors resulted in a very marked over-production of spermidine and spermine. The significance of these findings is discussed in relation to the assumption that polyamines act as a metabolic buffer, and maintain cellular pH under conditions where ammonium assimilation produces an excess of protons.  相似文献   
82.
Active transport systems in bacteria can be divided into two groups: those that are osmotic shock-resistant with one single membrane protein, and those that are shock-sensitive and have a membrane-bound protein complex plus a soluble periplasmic protein. Whether the bacterial assimilatory nitrate transport falls into the one or the other of these two groups has not been studied before. We report that nitrate uptake by the strictly aerobic, N2-fixing heterotrophic bacterium Azotobacter chroococcum is sensitive to osmotic shock. The polypeptide composition of cytoplasmic membranes changes in response to the nitrogen source available to the cells. Incorporation of [35S]-methionine into proteins as well as use of the A. chroococcum TRI mutant, which is defective in nitrate transport, and the A. choococcum MCD1 strain, a mutant unable to use nitrate as a nitrogen source, suggest that nitrate transport into A. chroococcum cells is mediated by a multicomponent system tightly bound to the cytoplasmic membrane.  相似文献   
83.
On the inducibility of nitrate transport by tobacco cells   总被引:1,自引:0,他引:1  
The question as to whether the nitrate transport system is induced by nitrate was addressed using a cell suspension of the XD line of Nicotiana tabacum L. cv. Xanthi as an experimental system. The cells were grown on area as the sole nitrogen source, and tungstate was used to render nitrate reductase non-functional. To avoid shock due to vacuum filtration, the cells, were harvested by gravity filtration. Nitrate uptake by cells, which were harvested, transferred to fresh medium, and immediately exposed to nitrate (freshly harvested cells), displayed a lag period of about 3 h.
In cells which were given incubation periods in fresh medium before exposure to nitrate (preincubated cells), the lag period was considerably shortened. After 3 h of preincubation in the absence of nitrate (recovered cells), the lag period was almost completely eliminated. Cycloheximide inhibited nitrate uptake by recovered cells within minutes, and prevented the development of nitrate uptake in freshly harvested cells. Cycloheximide did not affect uptake of α-aminoisobutyric acid (AIB) within the first 2 h after its addition. Recovery of the membrane potential from a low value just after the harvest of the cells to a maximal value 3 h later, was observed using the lipophilic cation methyltriphenylphosphonium (MTPP+), supplied at low concentrations, as a probe. Depolarization of the membrane potential by MTPP+, at the millimolar range, caused a rapid inhibition of nitrate uptake by recovered cells. The results indicate that nitrate transport by the XD cells depends on the membrane potential and on protein components with short half life. In addition, it requires a continuous protein synthesis. The effects of physical manipulation on nitrate uptake are discussed.  相似文献   
84.
Seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were used in two sets of experiments in order to evaluate; (1) the reciprocal effects of each nitrogen form on net uptake of nitrate and ammonium, and (2) the effect of earlier nitrogen nutrition on ammonium versus nitrate uptake. In the former group of experiments we studied the kinetics of nitrate and ammonium uptake as well as the interference of each of the two forms with net uptake of ammonium and nitrate by both nitrogen depleted and nitrogen fed carob seedlings. On the whole, nitrogen depletion led to increase in both affinity and Vmax of the system for both forms of nitrogen, at the same time as the effects of nitrate on uptake of ammonium and vice versa were concentration dependent. In the second group of experiments the effects of earlier nitrogen nutrition on nitrate and ammonium uptake were characterized, and in this case we observed that: (a) if only one form of N was supplied, ammonium was taken up in greater amounts than nitrate; (b) the presence of ammonium enhanced nitrate uptake; (c) ammonium uptake was inhibited by nitrate; (d) there was a significant effect of the earlier nitrogen nutrition on the response of the plants to a different nitrogen source. The latter was evident mainly as regards ammonium uptake by plants grown in ammonium nitrate. The interactions between nitrate and ammonium uptake systems are discussed on the basis of the adaptation to the nitrogen source during early growth.  相似文献   
85.
The influence of chromium concentration on ethylene production in bean plants ( Phaseolus vulgaris L. cv. Contender) was investigated. A Cr ion-induced inhibition of ethylene synthesis from endogenous 1-aminocyclopropane-1-carboxylic acid (ACC) was observed within both leaf discs floated on 2 m M CrO2−4 or Cr3+ and leaf discs from plants cultured in nutrient solutions containing 10, 20 or 40 μ M CrO2−4. However, Cr ions supplied either to plants with the nutrient solution or to discs with the incubation medium rather increased the conversion of exogenous ACC to ethylene. Primary leaves of plants exposed to CrO2−4-containing nutrient solutions showed a statistically insignificant decrease of ACC-synthase activity. In the trifoliolate leaves of plants exposed to 10 μ M CrO2−4, in which a significant decrease of ethylene production from endogenous ACC was observed, a substantial increase of ACC synthase was found. These results indicate that Cr ion-induced inhibition of ethylene production is not due to a breakdown of membrane integrity, which is necessary for ethylene forming enzyme activity, but caused by metabolic alterations leading to decreased ACC availability. Chromium ions may act by inhibiting ACC synthase activity or by diverting a metabolic step prior to the ACC synthase catalyzed reaction.  相似文献   
86.
Similarly to higher plant root systems, Chlamydomonas reinhardtii Dangeard (UTEX 90) cells exhibited biphasic NO3? uptake kinetics. The uptake pattern was similar in cells cultured in 10 mM NO3? (NO3?-grown), 0.25 mM NO3? (N-limited) or 10 mM NO3? followed by an 18-h period of N-deprivation (N-starved). In all cell types there was an apparent phase transition in uptake at 1.1 mM NO3?, although there were variations in the uptake Vmax of both isotherms. The rate of uptake via isotherm 0 ([NO3?]<1.1 mM) in N-limited cells was higher than that of either NO3?-grown or N-starved cells. In contrast, NO3?-grown and N-limited cells exhibited comparable Vmax values when supplied with 1.1 to 1.8 mM NO3? (isotherm 1). When supplied with 1.6 mM NO3?, both N-limited and N-starved cells exhibited enhanced linear uptake after 60 min of incubation. We ascribed this to an induction phenomenon. This trend was not observed when NO3?-grown cells were supplied with 1.6 mM NO3?, or when N-limited and N-starved cells were supplied with 0.6 mM NO3?. The ‘inducible’ aspect of uptake by N-limited cells was blocked by cycloheximide (10 mg l?1), but not by actinomycin D (5 mg l?1), thus indicating the involvement of a translational or post-translational event. To investigate this phenomenon further, we analysed the cell proteins of N-limited cells supplied with either 0.6 or 1.6 mM NO3? for 90 min, using two-dimensional gel electrophoresis. Comparison of protein profiles enabled the identification of a single cell membrane-associated polypeptide (21 kDa, pI ca 5.5) and ten soluble fraction polypeptides (17–73 kDa, pI ca 5.0 to 7.1) unique to the high NO3? treatment. We propose that the ‘inducible’ portion of NO3? uptake may provide the means by which C. reinhardtii cells regulate uptake in accordance with assimilatory capacity.  相似文献   
87.
Culture experiments are described in which Plantago lanceolata L. was grown from seedling till flowering under steady state conditions of optimum or suboptimum nitrate nutrition. In the optimum treatment, plants had free access to nitrate. In two suboptimum treatments, nitrate was added with constant relative addition rates (RAR) of 0.18 or 0.10 d–1 during the phase of constant relative uptake rates (RUR) of the plants and then with RAR's that were reduced stepwise from 0.18 to 0.07 d–1 or 0.10 to 0.04 d–1 when nutrient absorption gradually decreased. Reduction of the RAR's was aimed at maintenance of a balance between RAR and RUR. External nitrate concentrations were measured to monitor the reductions. In the vegetative phase, the relative growth rate (RGR) and the root weight ratio (RWR) of P. lanceolata were constant. In the reproductive phase, RGR's were constant, but lower, and RWR's decreased. Concentrations of organic-N in leaves were stable during the experimental period while those of the peduncles were lower and decreased with time. The ratio of reproductive to vegetative weight increased linearly with time. A number of plant parameters varied with N supply. ei]Section editor: T W Rufty  相似文献   
88.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   
89.
Inhibition of nitrate uptake by aluminium in maize   总被引:1,自引:0,他引:1  
Experiments with two maize (Zea mays L.) hybrids were conducted to determine (a) if the inhibition of nitrate uptake by aluminium involved a restriction in the induction (synthesis/assemblage) of nitrate transporters, and (b) if the magnitude of the inhibition was affected by the concurrent presence of ambient ammonium. At pH 4.5, the rate of nitrate uptake from 240 μM NH4NO3 was maximally inhibited by 100 μM aluminium, but there was little measurable effect on the rate of ammonium uptake. Presence of ambient aluminium did not eliminate the characteristic induction pattern of nitrate uptake upon first exposure of nitrogen-depleted seedlings to that ion. Removal of ambient aluminium after six hours of induction resulted in recovery within 30 minutes to rates of nitrate uptake that were similar to those of plants induced in absence of aluminium. Addition of aluminium to plants that had been induced in absence of aluminium rapidly restricted the rate of nitrate uptake to the level of plants that had been induced in the presence of aluminium. The data are interpreted as indicating that aluminium inhibited the activity of nitrate transporters to a greater extent than the induction of those transporters. When aluminium was added at initiation of induction, the effect of ambient ammonium on development of the inhibition by aluminium differed between the two hybrids. The responses indicate a complex interaction between the aluminium and ammonium components of high acidity soils in their influence on nitrate uptake. ei]{gnA C}{fnBorstlap}  相似文献   
90.
Erratic rainfall in rainfed lowlands and inadequate water supply in irrigated lowlands can results in alternate soil drying and flooding during a rice (Oryza sativa L.) cropping period. Effects of alternate soil drying and flooding on N loss by nitrification-denitrification have been inconsistent in previous field research. To determine the effects of water deficit and urea timing on soil NO3 and NH4, floodwater NO3, and N loss from added 15N-labeled urea, a field experiment was conducted for 2 yr on an Andaqueptic Haplaquoll in the Philippines. Water regimes were continuously flooded, not irrigated from 15 to 35 d after transplanting (DT), or not irrigated from 41 to 63 DT. The nitrogen treatments in factorial combination with water regimes were no applied N and 80 kg urea-N ha–1, either applied half basally and half at 37 DT or half at 11 DT and half at 65 DT. Water deficit at 15 to 35 DT and 41 to 63 DT, compared with continuous soil flooding, significantly reduced extractable NH4 in the top 30-cm soil layer and resulted in significant but small (<1.0 kg N ha–1) soil NO3 accumulations. Soil NO3, which accumulated during the water deficit, rapidly disappeared after reflooding. Water deficit at 15 to 35 DT, unlike that at 41 to 63 DT, increased the gaseous loss of added urea N as determined from unrecovered 15N in 15N balances. The results indicate that application of urea to young rice in saturated or flooded soil results in large, rapid losses of N (mean = 35% of applied N), presumably by NH3 volatilization. Subsequent soil drying and flooding during the vegetative growth phase can result in additional N loss (mean = 14% of applied N), presumably by nitrification-denitrification. This additional N loss due to soil drying and flooding decreases with increasing crop age, apparently because of increased competition by rice with soil microorganisms for NH4 and NO3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号