首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3217篇
  免费   267篇
  国内免费   104篇
  2024年   8篇
  2023年   82篇
  2022年   135篇
  2021年   202篇
  2020年   119篇
  2019年   165篇
  2018年   172篇
  2017年   108篇
  2016年   109篇
  2015年   151篇
  2014年   272篇
  2013年   302篇
  2012年   154篇
  2011年   151篇
  2010年   148篇
  2009年   148篇
  2008年   172篇
  2007年   126篇
  2006年   101篇
  2005年   109篇
  2004年   88篇
  2003年   77篇
  2002年   76篇
  2001年   46篇
  2000年   39篇
  1999年   20篇
  1998年   32篇
  1997年   23篇
  1996年   25篇
  1995年   21篇
  1994年   20篇
  1993年   17篇
  1992年   14篇
  1991年   15篇
  1990年   13篇
  1989年   16篇
  1988年   24篇
  1987年   11篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1975年   3篇
  1973年   2篇
排序方式: 共有3588条查询结果,搜索用时 15 毫秒
81.
Bone is a dynamic organ that is continuously turned over during growth, even in adults. During bone remodeling, homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. However, in pathological conditions such as osteoporosis, osteopetrosis, arthritic joint destruction, and bone metastasis, this equilibrium is disrupted. Since osteoclasts are excessively activated in osteolytic diseases, the inhibition of osteoclast function has been a major therapeutic strategy. It has recently been demonstrated that sphingosine-1-phosphate (S1P), a biologically active lysophospholipid that is enriched in blood, controls the trafficking of osteoclast precursors between the circulation and bone marrow cavities via G protein-coupled receptors, S1PRs. While S1PR1 mediates chemoattraction toward S1P in bone marrow, where S1P concentration is low, S1PR2 mediates chemorepulsion in blood, where the S1P concentration is high. The regulation of precursor recruitment may represent a novel therapeutic strategy for controlling osteoclast-dependent bone remodeling. By means of intravital multiphoton imaging of bone tissues, we have recently revealed that the reciprocal action of S1P controls the migration of osteoclast precursors between bone tissues and blood stream. Imaging technologies have enabled us to visualize the in situ behaviors of different cell types in intact tissues. In this review we also discuss future perspectives on this new method in the field of bone biology and medical sciences in general. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
82.
Galectins constitute an evolutionary conserved family that bind to β-galactosides. Increasing evidence shows that galectins are involved in many fundamental biological processes such as cellular communication, inflammation, differentiation and apoptosis. Changes in galectin-3 (Gal-3) expression are commonly seen in cancer and pre-cancerous conditions, and Gal-3 may be involved in the regulation of diverse cancer cell activities that contribute to tumourigenesis, cancer progression and metastasis. In addition, Gal-3 is a pro-inflammatory regulator in rheumatoid arthritis. Gal-3 has been shown to be involved in many aspects in allergic inflammation, such as eosinophil recruitment, airway remodeling, development of a Th2 phenotype as well as increased expression of inflammatory mediators. In an in vivo model it was shown that bronchoalveolar lavage (BAL) fluid from ovalbumin-challenged mice contained significantly higher levels of Gal-3 compared to control mice. The molecular mechanisms of Gal-3 in human asthma have not been fully elucidated. This review will focus on what is known about the Gal-3 and its role in the pathophysiological mechanisms of asthma to evaluate the potential of Gal-3 as a biomarker and therapeutic target of asthma.  相似文献   
83.

Background

Asthma is a chronic disease that is characterized by airway hyperresponsiveness and airway remodeling. The underlying mechanisms that mediate the pathological processes are not fully understood. Abl is a non-receptor protein tyrosine kinase that has a role in the regulation of smooth muscle contraction and smooth muscle cell proliferation in vitro. The role of Abl in airway hyperresponsiveness and airway remodeling in vivo is largely unknown.

Methods

To evaluate the role of Abl in asthma pathology, we assessed the expression of Abl in airway tissues from the ovalbumin sensitized and challenged mouse model, and human asthmatic airway smooth muscle cells. In addition, we generated conditional knockout mice in which Abl expression in smooth muscle was disrupted, and then evaluated the effects of Abl conditional knockout on airway resistance, smooth muscle mass, cell proliferation, IL-13 and CCL2 in the mouse model of asthma. Furthermore, we determined the effects of the Abl pharmacological inhibitors imatinib and GNF-5 on these processes in the animal model of asthma.

Results

The expression of Abl was upregulated in airway tissues of the animal model of asthma and in airway smooth muscle cells of patients with severe asthma. Conditional knockout of Abl attenuated airway resistance, smooth muscle mass and staining of proliferating cell nuclear antigen in the airway of mice sensitized and challenged with ovalbumin. Interestingly, conditional knockout of Abl did not affect the levels of IL-13 and CCL2 in bronchoalveolar lavage fluid of animals treated with ovalbumin. However, treatment with imatinib and GNF-5 inhibited the ovalbumin-induced increase in IL-13 and CCL2 as well as airway resistance and smooth muscle growth in animals.

Conclusions

These results suggest that the altered expression of Abl in airway smooth muscle may play a critical role in the development of airway hyperresponsiveness and airway remodeling in asthma. Our findings support the concept that Abl may be a novel target for the development of new therapy to treat asthma.  相似文献   
84.
85.
86.
Scale matters     
During meiosis in many organisms, homologous chromosomes engage in numerous recombination events initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. DSBs are distributed nonrandomly, which governs how recombination influences inheritance and genome evolution. The chromosomal features that shape DSB distribution are not well understood. In the budding yeast Saccharomyces cerevisiae, trimethylation of lysine 4 of histone H3 (H3K4me3) has been suggested to play a causal role in targeting Spo11 activity to small regions of preferred DSB formation called hotspots. The link between H3K4me3 and DSBs is supported in part by a genome-wide spatial correlation between the two. However, this correlation has only been evaluated using relatively low-resolution maps of DSBs, H3K4me3 or both. These maps illuminate chromosomal features that influence DSB distributions on a large scale (several kb and greater) but do not adequately resolve features, such as chromatin structure, that act on finer scales (kb and shorter). Using recent nucleotide-resolution maps of DSBs and meiotic chromatin structure, we find that the previously described spatial correlation between H3K4me3 and DSB hotspots is principally attributable to coincident localization of both to gene promoters. Once proximity to the nucleosome-depleted regions in promoters is accounted for, H3K4me3 status has only modest predictive power for determining DSB frequency or location. This analysis provides a cautionary tale about the importance of scale in genome-wide analyses of DSB and recombination patterns.  相似文献   
87.
Comment on: Liu J, et al. Cell Cycle 2012; 11:2643-9.  相似文献   
88.
The cellular response to ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in native chromatin requires a tight coordination between the activities of DNA repair machineries and factors that modulate chromatin structure. SMARCA5 is an ATPase of the SNF2 family of chromatin remodeling factors that has recently been implicated in the DSB response. It forms distinct chromatin remodeling complexes with several non-canonical subunits, including the remodeling and spacing factor 1 (RSF1) protein. Despite the fact that RSF1 is often overexpressed in tumors and linked to tumorigenesis and genome instability, its role in the DSB response remains largely unclear. Here we show that RSF1 accumulates at DSB sites and protects human cells against IR-induced DSBs by promoting repair of these lesions through homologous recombination (HR) and non-homologous end-joining (NHEJ). Although SMARCA5 regulates the RNF168-dependent ubiquitin response that targets BRCA1 to DSBs, we found RSF1 to be dispensable for this process. Conversely, we found that RSF1 facilitates the assembly of centromere proteins CENP-S and CENP-X at sites of DNA damage, while SMARCA5 was not required for these events. Mechanistically, we uncovered that CENP-S and CENP-X, upon their incorporation by RSF1, promote assembly of the NHEJ factor XRCC4 at damaged chromatin. In contrast, CENP-S and CENP-X were dispensable for HR, suggesting that RSF1 regulates HR independently of these centromere proteins. Our findings reveal distinct functions of RSF1 in the 2 major pathways of DSB repair and explain how RSF1, through the loading of centromere proteins and XRCC4 at DSBs, promotes repair by non-homologous end-joining.  相似文献   
89.
Comment on: Atwood A, et al. Proc Natl Acad Sci U S A 2011; 108:18560-5.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号