首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3217篇
  免费   267篇
  国内免费   104篇
  2024年   8篇
  2023年   82篇
  2022年   135篇
  2021年   202篇
  2020年   119篇
  2019年   165篇
  2018年   172篇
  2017年   108篇
  2016年   109篇
  2015年   151篇
  2014年   272篇
  2013年   302篇
  2012年   154篇
  2011年   151篇
  2010年   148篇
  2009年   148篇
  2008年   172篇
  2007年   126篇
  2006年   101篇
  2005年   109篇
  2004年   88篇
  2003年   77篇
  2002年   76篇
  2001年   46篇
  2000年   39篇
  1999年   20篇
  1998年   32篇
  1997年   23篇
  1996年   25篇
  1995年   21篇
  1994年   20篇
  1993年   17篇
  1992年   14篇
  1991年   15篇
  1990年   13篇
  1989年   16篇
  1988年   24篇
  1987年   11篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1975年   3篇
  1973年   2篇
排序方式: 共有3588条查询结果,搜索用时 15 毫秒
111.
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage‐dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co‐repressor complex function, increased levels of c‐Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.  相似文献   
112.
DNA repair events have functional significance especially for genome stability. Although the DNA damage response within the whole genome has been extensively studied, the region-specific characteristics of nuclear sub-compartments such as the nucleolus or fragile sites have not been fully elucidated. Here, we show that the heterochromatin protein HP1 and PML protein recognize spontaneously occurring 53BP1- or γ-H2AX-positive DNA lesions throughout the genome. Moreover, 53BP1 nuclear bodies, which co-localize with PML bodies, also occur within the nucleoli compartments. Irradiation of the human osteosarcoma cell line U2OS with γ-rays increases the degree of co-localization between 53BP1 and PML bodies throughout the genome; however, the 53BP1 protein is less abundant in chromatin of ribosomal genes and fragile sites (FRA3B and FRA16D) in γ-irradiated cells. Most epigenomic marks on ribosomal genes and fragile sites are relatively stable in both non-irradiated and γ-irradiated cells. However, H3K4me2, H3K9me3, H3K27me3 and H3K79me1 were significantly changed in promoter and coding regions of ribosomal genes after exposure of cells to γ-rays. In fragile sites, γ-irradiation induces a decrease in H3K4me3, changes the levels of HP1β, and modifies the levels of H3K9 acetylation, while the level of H3K9me3 was relatively stable. In these studies, we confirm a specific DNA-damage response that differs between the ribosomal genes and fragile sites, which indicates the region-specificity of DNA repair.  相似文献   
113.
114.
Recently discovered strong nucleosomes (SNs) are characterized by strongly periodical DNA sequence, with visible rather than hidden sequence periodicity. In a quest for possible functions of the SNs, it has been found that the SNs concentrate within centromere regions of A. thaliana chromosomes . They, however, have been detected in Caenorhabditis elegans as well, although the holocentric chromosomes of this species do not have centromeres. Scrutinizing the SNs of C. elegans and their distributions along the DNA sequences of the chromosomes, we have discovered that the SNs are located mainly at the ends of the chromosomes of C. elegans. This suggests that, perhaps, the ends of the chromosomes fulfill some function(s) of centromeres in this species, as also indicated by the cytogenetic studies on meiotic chromosomes in spermatocytes of C. elegans, where the end-to-end association is observed. The centromeric involvement of the SNs, also found in A. thaliana, opens new horizons for the chromosome and centromere structure studies.  相似文献   
115.
Mouse models of myocardial infarction are essential tools for the study of cardiac injury, repair, and remodeling. Our current investigation establishes a systematic approach for quantitative evaluation of the inflammatory and reparative response, cardiac function, and geometry in a mouse model of reperfused myocardial infarction. Reperfused mouse infarcts exhibited marked induction of inflammatory cytokines that peaked after 6 hr of reperfusion. In the infarcted heart, scar contraction and chamber dilation continued for at least 28 days after reperfusion; infarct maturation was associated with marked thinning of the scar, accompanied by volume loss and rapid clearance of cellular elements. Echocardiographic measurements of end-diastolic dimensions correlated well with morphometric assessment of dilative remodeling in perfusion-fixed hearts. Hemodynamic monitoring was used to quantitatively assess systolic and diastolic function; the severity of diastolic dysfunction following myocardial infarction correlated with cardiomyocyte hypertrophy and infarct collagen content. Expression of molecular mediators of inflammation and cellular infiltration needs to be investigated during the first 72 hr, whereas assessment of dilative remodeling requires measurement of geometric parameters for at least four weeks after the acute event. Rapid initiation and resolution of the inflammatory response, accelerated scar maturation, and extensive infarct volume loss are important characteristics of infarct healing in mice.  相似文献   
116.
117.
118.
119.
Isolation of specific genomic regions retaining molecular interactions is necessary for their biochemical analysis. Here, we established a novel method, engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), for purification of specific genomic regions retaining molecular interactions. We showed that enChIP using the CRISPR system efficiently isolates specific genomic regions. In this form of enChIP, specific genomic regions are immunoprecipitated with antibody against a tag(s), which is fused to a catalytically inactive form of Cas9 (dCas9), which is co-expressed with a guide RNA (gRNA) and recognizes endogenous DNA sequence in the genomic regions of interest. enChIP–mass spectrometry (enChIP–MS) targeting endogenous loci identified associated proteins. enChIP using the CRISPR system would be a convenient and useful tool for dissecting chromatin structure of genomic regions of interest.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号