全文获取类型
收费全文 | 6576篇 |
免费 | 261篇 |
国内免费 | 100篇 |
专业分类
6937篇 |
出版年
2024年 | 7篇 |
2023年 | 53篇 |
2022年 | 85篇 |
2021年 | 123篇 |
2020年 | 93篇 |
2019年 | 167篇 |
2018年 | 163篇 |
2017年 | 124篇 |
2016年 | 119篇 |
2015年 | 151篇 |
2014年 | 250篇 |
2013年 | 390篇 |
2012年 | 221篇 |
2011年 | 301篇 |
2010年 | 158篇 |
2009年 | 258篇 |
2008年 | 321篇 |
2007年 | 328篇 |
2006年 | 298篇 |
2005年 | 255篇 |
2004年 | 256篇 |
2003年 | 232篇 |
2002年 | 213篇 |
2001年 | 152篇 |
2000年 | 154篇 |
1999年 | 149篇 |
1998年 | 150篇 |
1997年 | 132篇 |
1996年 | 139篇 |
1995年 | 141篇 |
1994年 | 140篇 |
1993年 | 115篇 |
1992年 | 119篇 |
1991年 | 122篇 |
1990年 | 116篇 |
1989年 | 104篇 |
1988年 | 92篇 |
1987年 | 65篇 |
1986年 | 82篇 |
1985年 | 87篇 |
1984年 | 80篇 |
1983年 | 54篇 |
1982年 | 46篇 |
1981年 | 49篇 |
1980年 | 25篇 |
1979年 | 13篇 |
1978年 | 16篇 |
1977年 | 5篇 |
1976年 | 8篇 |
1971年 | 4篇 |
排序方式: 共有6937条查询结果,搜索用时 15 毫秒
81.
Pertussis Toxin Attenuates D2 Inhibition and Enhances D1 Stimulation of Adenylate Cyclase by Dopamine in Rat Striatum 总被引:1,自引:1,他引:1
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA. 相似文献
82.
To investigate aspects of the biochemical nature of membrane-bound dopamine D1 receptors, rat striatal homogenates were pretreated with heavy metal cations and some other chemical agents, and their effects on D1 receptors were subsequently determined using a standard [3H](R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1-N-3- benzazepine([3H]SCH 23390) binding assay. Incubation of striatal membranes with as little as 1 microM Hg2+, 10 microM Cu2+, and 10 microM Cd2+ completely prevented specific [3H]SCH 23390 binding. The effect of Cu2+, 1.5 microM, was noncompetitive in nature, whereas 3-5 microM Cu2+ afforded mixed-type inhibition. The inhibitory effect of Cu2+ was fully reversed by dithiothreitol (0.1-1 mM). Cu2+ (2 microM) did not affect the affinity of cis-flupenthixol or clozapine for remaining [3H]SCH 23390 sites. A second series of cations, Co2+ (30 microM), Ni2+ (30 microM), Mn2+ (1 mM), Ca2+ (25 mM), and Ba2+ (20 mM), inhibited specific [3H]SCH 23390 binding by 50% at the concentrations indicated. The thiol alkylating reagent N-ethylmaleimide (NEM) (0.2 mM) reduced specific binding by 70%. The effect of NEM was completely prevented by coincubation with a D1 receptor saturating concentration of SCH 23390 (20 nM) or dopamine (10 microM). The results indicated that the dopamine D1 receptor is a thiol protein and that a thiol group is essential for the ligand binding. 相似文献
83.
Raquel Fernández-Durango José A. de Juan Horatio Zimman Francisco J. Moya Mario Garcia de la Coba Arturo Fernández-Cruz 《Journal of neurochemistry》1994,62(4):1482-1488
Abstract: Specific endothelin (ET) binding sites were characterized in membranes prepared from human cerebral cortices using binding assay and cross-linking analysis. The presence of immunoreactive (IR) ET-1 was studied by radioimmunoassay. Saturation binding experiments revealed that the K D and B max for 125 I-ET-1 and 125 l-ET-3 to membranes from gray matter were 25 ± 6 pM and 115 ± 15 fmol/mg of protein and 24 ± 5 p M and 108 ± 13 fmol/mg of protein, respectively. Similar results were obtained for white matter. In the presence of 10 n M sarafotoxin-6c, which is selective for ETB receptors, 125 I-ET-1 and 125 l-ET-3 binding was totally abolished. However, in the presence of 1 μ M BQ123, which is selective for ETA receptors, both bindings were not affected. These results suggest that the human cerebral cortex contains only ETB receptors. Cross-linking of 125 I-ET-1 and 125 l-ET-3 to membranes with disuccinimidyl suberate resulted in the labeling of two bands of 48 and 31 kDa. Concentrations of IR-ET-1 in the gray and white matter were 7.0 ± 3.2 and 2.5 ± 1.7 fmol/g wet weight, respectively. The demonstration of high-affinity ETB receptors and the presence of IRET-1 suggest that the peptide may act as a neurotransmitter or neuromodulator in the human cerebral cortex. 相似文献
84.
S. Salvadori R. Guerrini V. Forlani S. D. Bryant M. Attila L. H. Lazarus 《Amino acids》1994,7(3):291-304
Summary Analysis of deltorphin A position 4 analogues included: backbone constrained N
MeHis, spinacine (Spi), N
MePhe and the tetrahydroisoquinoline-3-carboxylic acid (Tic); spatially confined side-chain (Phg); and imidazole alkylation ofl- andd-His4 enantiomers. High selectivity was lost with the following replacements: N
MeHis4, N
MePhe4 and Phg4 reduced binding and the constrained residues also increasedµ binding; ring closure between the side-chain and amino group to yield Spi4 or Tic4 increasedµ affinity. Imidazole methylation of His4 marginally affected opioid binding and doubled selectivity; alkylatedd-His4-derivatives generally maintained selectivity in spite of decreased affinities. Thus, His4 imidazole preserves selectivity by facilitating high binding and by repulsion at theµ receptor. Several low energy conformers of deltorphin A indicated that the His4 imidazole preferred a spatial orientation parallel to the phenolic side-chain of Tyr1 suggestive that this conformation might contribute to high affinity and selectivity. 相似文献
85.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease. 相似文献
86.
Michael Remesic Giorgia Macedonio Adriano Mollica Frank Porreca Victor Hruby Yeon Sun Lee 《Bioorganic & medicinal chemistry》2018,26(12):3664-3667
In an effort to improve biphalin’s potency and efficacy at the µ-(MOR) and δ-opioid receptors (DOR), a series of cyclic biphalin analogues 1–5 with a cystamine or piperazine linker at the C-terminus were designed and synthesized by solution phase synthesis using Boc-chemistry. Interestingly, all of the analogues showed balanced opioid agonist activities at all opioid receptor subtypes due to enhanced κ-opioid receptor (KOR) activity. Our results indicate that C-terminal flexible linkers play an important role in KOR activity compared to that of the other cyclic biphalin analogues with a hydrazine linker. Among them, analogue 5 is a potent (Ki?=?0.27, 0.46, and 0.87?nM; EC50?=?3.47, 1.45, and 13.5?nM at MOR, DOR, and KOR, respectively) opioid agonist with high efficacy. Based on the high potency and efficacy at the three opioid receptor subtypes, the ligand is expected to have a potential synergistic effect on relieving pain and further studies including in vivo tests are worthwhile. 相似文献
87.
88.
N. Gazzah A. Gharib I. Delton P. Molière G. Durand R. Christen M. Lagarde N. Sarda 《Journal of neurochemistry》1993,61(3):1057-1063
Abstract: We studied the effect of a diet deficient in n-3 fatty acids on the adenosine-dependent melatonin release from cultured rat pineal gland after stimulation by 5'- N -ethylcarboxamidoadenosine (NECA), an A2 adenosine agonist. Experiments were conducted with 2-month-old rats raised on semipurified diets containing either peanut oil (n-3 deficients) or peanut plus rapeseed oil (controls). The proportion of docosahexaenoic acid (22:6 n-3) in the pineal total lipid fraction and in phosphatidylcholine and phosphatidylethanolamine was significantly decreased in n-3-deficient rats. This was compensated for partially by an increase in 22:4 n-6 and 22:5 n-6 levels. The activity of the cultured rat pineal, in terms of cyclic AMP content and N -acetylserotonin and melatonin release in the medium, was lower after stimulation by 10-5 mol/L NECA in the group fed peanut oil than in the group fed peanut plus rapeseed oil. The increased ratio of n-6/n-3 fatty acids in pineal total lipids and the major glycerophospholipids (phosphatidylcholine and phosphatidylethanolamine) may have an important influence on the rat pineal responses. The results are discussed in the context of changes in membrane-bound proteins, including enzymes and/or receptors involved in the rat pineal gland function. 相似文献
89.
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2(+)-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca(2+)-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca(2+)-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons. 相似文献
90.
Syed M. I. Kazmi Jai Ramwani Lalit K. Srivastava G. Rajakumar Gregory M. Ross Marjorie Cullen Ram K. Mishra 《Journal of neurochemistry》1986,47(5):1493-1502
3,4-Dihydroxyphenylethylamine (dopamine) D2 receptors, solubilized from bovine striatal membranes using a cholic acid-NaCl combination, exhibited the typical pharmacological characteristics of both agonist and antagonist binding. The rank order potency of the agonists and antagonists to displace [3H]spiroperidol binding was the same as that observed with membrane-bound receptors. Computer-assisted analysis of the [3H]spiroperidol/agonist competition curves revealed the retention of high- and low-affinity states of the D2 receptor in the solubilized preparations and the proportions of receptor subpopulations in the two affinity states were similar to those reported in membrane. Guanine nucleotide almost completely converted the high-affinity sites to low-affinity sites for the agonists. The binding of the high-affinity agonist [3H]N-n-propylnorapomorphine ([3H]NPA) was clearly demonstrated in the solubilized preparations for the first time. Addition of guanylyl-imidodiphosphate completely abolished the [3H]NPA binding. When the solubilized receptors were subjected to diethylaminoethyl-Sephacel chromatography, the dopaminergic binding sites eluted in two distinct peaks, showing six- to sevenfold purification of the receptors in the major peak. Binding studies performed on both peaks indicated that the receptor subpopulation present in the first peak may have a larger proportion of high-affinity binding sites than the second peak. The solubilized preparation also showed high-affinity binding of [35S]guanosine-5'-(gamma-thio)triphosphate, a result suggesting the presence of guanine nucleotide binding sites, which may interact with the solubilized D2 receptors. These data are consistent with the retention of the D2 receptor-guanine nucleotide regulatory protein complex in the solubilized preparations and should provide a suitable model system to study the receptor-effector interactions. 相似文献