首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3079篇
  免费   136篇
  国内免费   95篇
  3310篇
  2023年   64篇
  2022年   82篇
  2021年   76篇
  2020年   79篇
  2019年   113篇
  2018年   105篇
  2017年   88篇
  2016年   74篇
  2015年   105篇
  2014年   168篇
  2013年   266篇
  2012年   143篇
  2011年   139篇
  2010年   144篇
  2009年   123篇
  2008年   136篇
  2007年   172篇
  2006年   140篇
  2005年   134篇
  2004年   86篇
  2003年   68篇
  2002年   78篇
  2001年   63篇
  2000年   47篇
  1999年   29篇
  1998年   26篇
  1997年   30篇
  1996年   28篇
  1995年   29篇
  1994年   23篇
  1993年   21篇
  1992年   29篇
  1991年   25篇
  1990年   32篇
  1989年   24篇
  1988年   27篇
  1987年   30篇
  1986年   24篇
  1985年   23篇
  1984年   39篇
  1983年   25篇
  1982年   29篇
  1981年   32篇
  1980年   18篇
  1979年   19篇
  1978年   12篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
  1974年   8篇
排序方式: 共有3310条查询结果,搜索用时 15 毫秒
71.
The lysosomal membrane was thought for a long time to primarily act as a physical barrier separating the luminal acidic milieu from the cytoplasmic environment. Meanwhile, it has been realized that unique lysosomal membranes play essential roles in a number of cellular events ranging from phagocytosis, autophagy, cell death, virus infection to membrane repair. This review provides an overview about the most interesting emerging functions of lysosomal membrane proteins and how they contribute to health and disease. Their importance is exemplified by their role in acidification, transport of metabolites and ions across the membrane, intracellular transport of hydrolases and the regulation of membrane fusion events. Studies in patient cells, non‐mammalian model organisms and knockout mice contributed to our understanding of how the different lysosomal membrane proteins affect cellular homeostasis, developmental processes as well as tissue functions. Because these proteins are central for the biogenesis of this compartment they are also considered as attractive targets to modulate the lysosomal machinery in cases where impaired lysosomal degradation leads to cellular pathologies. We are only beginning to understand the complex composition and function of these proteins which are tightly linked to processes occurring throughout the endocytic and biosynthetic pathways.   相似文献   
72.
The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. Telocytes, a new type of interstitial cells, have been recently identified in many organs, including gallbladder. Considering telocyte functions, it is presumed that these cells might be involved in the signalling processes. The purpose of this study was to correlate the quantity of telocytes in the gallbladder with the lithogenicity of bile. Gallbladder specimens were collected from 24 patients who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients who received elective treatment for pancreatic head tumours. Telocytes were visualized in paraffin sections of gallbladders with double immunofluorescence using primary antibodies against c‐Kit (anti‐CD117) and anti‐mast cell tryptase. Cholesterol, phospholipid and bile acid levels were measured in gallbladder bile. The number of telocytes in the gallbladder wall was significantly lower in the study group than that in the control group (3.03 ± 1.43 versus 6.34 ± 1.66 cell/field of view in the muscularis propria, < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction in telocytes density in the gallbladder.  相似文献   
73.
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the “acidic/alternative” pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.  相似文献   
74.
75.
Lactobacillus casei LA‐1 isolated from a nondairy fermented source was evaluated for its in vitro ability to reduce cholesterol. The bacterium tested positive for bile salt deconjugation in relation to cholesterol removal. Tested growth‐associated physiological variables such as pH, temperature and inoculum size were all found to have significant effects on in vitro cholesterol reduction and biomass production (both P < 0.005). Furthermore, a central composite design was used to evaluate the effects of significant variables and their interactions. A linear regression model was developed for in vitro cholesterol reduction as a function of growth‐associated variables. Maximum cholesterol reduction achieved was 45% whereas maximum biomass yield of 2.34 optical density was observed at the central point. Our study possibly indicates that the growth of L. casei LA‐1 depends on its cholesterol removing ability.  相似文献   
76.
The aim of this study was to investigate the performance of a newly devised high-performance thin-layer chromatography (HPTLC) method in quantifying common liposome membrane components, including the five phospholipids (PLs), phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, as well as cholesterol, cholesteryl hemisuccinate, and linoleic acid. Besides strictly keeping to a standardized procedure, three parameters were particularly critical for proper quantification. First, a relative humidity of higher than 60% caused migration distances to increase and reduced the resolution of the PLs on a silica-gel 60 HPTLC plate. Second, PLs underwent oxidative combustion during storage for 2 or 24 hours on an HPTLC plate, with peak losses of up to 25–44%. These losses could be prevented by storage under nitrogen and, to some extent, by the addition of the antioxidant, DL-α-tocopherol. Third, even with automated sample application, the accuracy and consistency of the application volume proved to be an important cause of error and needs routine verification. Considering these parameters, the method was found to accurately and precisely determine the composition of three different liposome preparations. The recovery was 97.2–101.8%, compared to secondary methods, and consistent over different days and with different operators (mean RSD of the recovery: 2.03?±?1.16%, n?=?9). The working range was determined to be 100–300?ng in the case of the PLs (individual limit of determination between 40 and 80?ng) and 20–60?ng in the case of cholesterol (limit of determination: 16?ng).  相似文献   
77.
Abstract

The aim of the present study is to investigate the interactions between liposomes and proteins and to evaluate the role of liposomal lipid composition and concentration in the formation of protein corona. Liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or hydrogenated soybean phosphatidylcholine (HSPC) with 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DPPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] (DPPE-PEG 3000), cholesterol (CH) or mixtures of these lipids, were prepared at different concentrations by the thin-film hydration method. After liposomes were dispersed in HPLC-grade water and foetal bovine serum (FBS), their physicochemical characteristics, such as size, size distribution, and ζ-potential, were determined using dynamic and electrophoretic light scattering. Aggregation of DPPC, HSPC, DPPC:CH (9:1 molar ratio), and HSPC:CH (9:1 molar ratio) in FBS was observed. On the contrary, liposomes incorporating DPPG lipids and CH both in a molar ratio of 11% were found to be stable over time, while their size did not alter dramatically in biological medium. Liposomes containing CH and PEGylated lipids retain their size in the presence of serum as well as their physical stability. In addition, our results indicate that the protein binding depends on the presence of polyethylene glycol (PEG), CH, concentration and surface charge. In this paper, we introduce a new parameter, fraction of stealthiness (Fs), for investigating the extent of protein binding to liposomes. This parameter depends on the changes in size of liposomes after serum incubation, while liposomes have stealth properties when Fs is close to 1. Thus, we conclude that lipid composition and concentration affect the adsorption of proteins and the liposomal stabilization.  相似文献   
78.
Micrometric membrane lipid segregation is controversial. We addressed this issue in attached erythrocytes and found that fluorescent boron dipyrromethene (BODIPY) analogs of glycosphingolipids (GSLs) [glucosylceramide (BODIPY-GlcCer) and monosialotetrahexosylganglioside (GM1BODIPY)], sphingomyelin (BODIPY-SM), and phosphatidylcholine (BODIPY-PC inserted into the plasma membrane spontaneously gathered into distinct submicrometric domains. GM1BODIPY domains colocalized with endogenous GM1 labeled by cholera toxin. All BODIPY-lipid domains disappeared upon erythrocyte stretching, indicating control by membrane tension. Minor cholesterol depletion suppressed BODIPY-SM and BODIPY-PC but preserved BODIPY-GlcCer domains. Each type of domain exchanged constituents but assumed fixed positions, suggesting self-clustering and anchorage to spectrin. Domains showed differential association with 4.1R versus ankyrin complexes upon antibody patching. BODIPY-lipid domains also responded differentially to uncoupling at 4.1R complexes [protein kinase C (PKC) activation] and ankyrin complexes (in spherocytosis, a membrane fragility disease). These data point to micrometric compartmentation of polar BODIPY-lipids modulated by membrane tension, cholesterol, and differential association to the two nonredundant membrane:spectrin anchorage complexes. Micrometric compartmentation might play a role in erythrocyte membrane deformability and fragility.  相似文献   
79.
Atherosis of spiral arteries in uteroplacental beds from preeclamptic women resemble those of atherosclerosis, characterized by increased plasma lipids and lipoproteins. We hypothesized that: 1) lipoprotein receptors/transporters in the placenta would be upregulated in preeclampsia, associated with increased maternal and fetal lipoprotein concentrations; and 2) expression of these would be reduced in preeclamptic placentae from women delivering small-for-gestational-age (SGA) infants. Placental biopsies and maternal and umbilical serum samples were taken from 27 normotensive and 24 preeclamptic women. Maternal/umbilical cord serum LDL, HDL, total cholesterol, and triglycerides were measured. Placental mRNA expression of lipoprotein receptors/transporters were quantified using quantitative RT-PCR. Protein localization/expression of LDL receptor-related protein 1 (LRP-1) in the preeclamptic placentae with/without SGA was measured by immunohistochemistry. Placental mRNA expression of all genes except paraoxonase-1 (PON-1), microsomal triglyceride transfer protein (MTTP), and protein disulfide isomerase family A member 2 (PDIA2) were observed. No differences for any lipoprotein receptors/transporters were found between groups; however, in the preeclamptic group placental LRP-1 expression was lower in SGA delivering mothers (n = 7; P = 0.036). LRP-1 protein was localized around fetal vessels and Hofbauer cells. This is the first detailed study of maternal/fetal lipoprotein concentrations and placental lipoprotein receptor mRNA expression in normotensive and preeclamptic pregnancies. These findings do not support a role of altered lipid metabolism in preeclampsia, but may be involved in fetal growth.  相似文献   
80.
MDCO-216, a complex of dimeric recombinant apoA-IMilano (apoA-IM) and palmitoyl-oleoyl-phosphatidylcholine (POPC), was administered to cynomolgus monkeys at 30, 100, and 300 mg/kg every other day for a total of 21 infusions, and effects on lipids, (apo)lipoproteins, and ex-vivo cholesterol efflux capacity were monitored. After 7 or 20 infusions, free cholesterol (FC) and phospholipids (PL) were strongly increased, and HDL-cholesterol (HDL-C), apoA-I, and apoA-II were strongly decreased. We then measured short-term effects on apoA-IM, lipids, and (apo)lipoproteins after the first or the last infusion. After the first infusion, PL and FC went up in the HDL region and also in the LDL and VLDL regions. ApoE shifted from HDL to LDL and VLDL regions, while ApoA-IM remained located in the HDL region. On day 41, ApoE levels were 8-fold higher than on day 1, and FC, PL, and apoE resided mostly in LDL and VLDL regions. Drug infusion quickly decreased the endogenous cholesterol esterification rate. ABCA1-mediated cholesterol efflux on day 41 was markedly increased, whereas scavenger receptor type B1 (SRB1) and ABCG1-mediated effluxes were only weakly increased. Strong increase of FC is due to sustained stimulation of ABCA1-mediated efflux, and drop in HDL and formation of large apoE-rich particles are due to lack of LCAT activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号