首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21885篇
  免费   1722篇
  国内免费   1672篇
  25279篇
  2024年   65篇
  2023年   471篇
  2022年   777篇
  2021年   945篇
  2020年   912篇
  2019年   1041篇
  2018年   938篇
  2017年   783篇
  2016年   733篇
  2015年   809篇
  2014年   1165篇
  2013年   1422篇
  2012年   871篇
  2011年   1053篇
  2010年   741篇
  2009年   976篇
  2008年   971篇
  2007年   1084篇
  2006年   960篇
  2005年   861篇
  2004年   783篇
  2003年   764篇
  2002年   622篇
  2001年   502篇
  2000年   485篇
  1999年   434篇
  1998年   401篇
  1997年   349篇
  1996年   332篇
  1995年   276篇
  1994年   277篇
  1993年   256篇
  1992年   227篇
  1991年   195篇
  1990年   174篇
  1989年   155篇
  1988年   140篇
  1987年   149篇
  1986年   136篇
  1985年   181篇
  1984年   145篇
  1983年   101篇
  1982年   124篇
  1981年   116篇
  1980年   69篇
  1979年   82篇
  1978年   69篇
  1977年   45篇
  1975年   32篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Atul R. Gandecha  Eric Cundliffe   《Gene》1996,180(1-2):173-176
The macrolide antibiotic, tylosin (Ty), is produced by Streptomyces fradiae. Two resistance determinants (tlrA, synonym ermSF, and tlrD) conferring resistance to macrolide, lincosamide and streptogramin B type (MLS) antibiotics were previously isolated from this strain, and their products shown to methylate 23S ribosomal RNA (rRNA) at a common site, thereby rendering the ribosomes MLS resistant. However, the T1rA and T1rD proteins differ in their action; the former dimethylates, and the latter monomethylates, the target nucleotide. Here, 2.2 kb of DNA from the tylLM region of the tylosin biosynthetic gene cluster of S. fradiae has been sequenced and shown to encompass tlrD. Comparison of the sequences of tlrA and tlrD (and of their deduced products) with those of related (‘erm-type’) genes from other actinomycetes suggests that the combined presence of tlrA and tlrD in S. fradiae is not the result of recent gene duplication.  相似文献   
72.
Overexpression of the MDR protein, or p-glycoprotein (p-GP), in cells leads to decreased initial rates of accumulation and altered intracellular retention of chemotherapeutic drugs and a variety of other compounds. Thus, increased expression of the protein is related to increased drug resistance. Since several homologues of the MDR protein (CRP, ltpGPA, PDR5, sapABCDF) are also involved in conferring drug resistance phenomena in microorganisms, elucidating the function of the MDR protein at a molecular level will have important general applications. Although MDR protein function has been studied for nearly 20 years, interpretation of most data is complicated by the drug-selection conditions used to create model MDR cell lines. Precisely what level of resistance to particular drugs is conferred by a given amount of MDR protein, as well as a variety of other critical issues, are not yet resolved. Data from a number of laboratories has been gathered in support of at least four different models for the MDR protein. One model is that the protein uses the energy released from ATP hydrolysis to directly translocate drugs out of cells in some fashion. Another is that MDR protein overexpression perturbs electrical membrane potential () and/or intracellular pH (pHi) and therebyindirectly alters translocation and intracellular retention of hydrophobic drugs that are cationic, weakly basic, and/or that react with intracellular targets in a pHi, or -dependent manner. A third model proposes that the protein alternates between drug pump and Cl channel (or channel regulator) conformations, implying that both direct and indirect mechanisms of altered drug translocation may be catalyzed by MDR protein. A fourth is that the protein acts as an ATP channel. Our recent work has tested predictions of these models via kinetic analysis of drug transport and single-cell photometry analysis of pHi, , and volume regulation in novel MDR and CFTR transfectants that have not been exposed to chemotherapeutic drugs prior to analysis. This paper reviews these data and previous work from other laboratories, as well as relevant transport physiology concepts, and summarizes how they either support or contradict the different models for MDR protein function.  相似文献   
73.
In a study of Necturus gallbladder epithelium Benzel et al. (Benzel et al., 1980) found that low (0.2–1.2 M) and higher concentrations (1.5 M and more) of cytochalasin B (CB) caused an increase and decrease in the transepithelial electrical resistance (TER), respectively. Moreover, there were slight changes in the height and complexicity of tight junction (TJ) strands, as visualized by freeze-fracture and freeze-etching. To elucidate the mechanisms of these findings, we first demonstrated that the effect is also present in monolayers of Madin-Darby Canine Kidney strain I (MDCK-I) cells. Thus, a low concentration (0.1 ng/ml) cytochalasin B (CB) strengthened the permeability barrier, as evidenced quantitatively by increases in TER on transepithelial electrical measurements. Furthermore, indirect immunofluorescence and confocal microscopy demonstrated that this effect was paralleled with an accumulation of F-actin and the tight junction marker protein, ZO-1, at the level of TJ. Equimolar concentrations of dihydrocytochalasin B (dhCB), on the other hand, did not lead to a tightening of the epithelium. Confirming previous studies, there was a general decrease in epithelial resistance after treatment with high concentrations (1 g/ml) of CB and dhCB, which was accompanied by distinct changes in the F-actin network and distribution of ZO-1. We speculate that the divergent effects of CB and dhCB on the F-actin and ZO-1 organization might be due to specific effects on the transport of monosaccharides across the plasma membrane, or that CB and dhCB in distinct ways involve the turnover of phosphatidylinositols in the membrane, thereby modulating junctional permeability and F-actin structure.  相似文献   
74.
Callus cultures of Torenia fournieri Compacta Blue were initiated on a modified Murashige and Skoog salt medium (MS) with 2.26 M 2,4-dichlorophenoxyacetic acid. Shoots were regenerated from these cultures using MS medium amended with 2.46 M indolebutyric acid and 8.88 M benzyladenine. These shoot cultures were subjected to two-spotted spidermite (Tetranychus urticae Koch.) and the greenhouse whitefly [Trialeurodes vaporariorum (Westwood)]. Pests were allowed to feed until such time that their populations started to decrease due to lack of food. The remaining live tissue of the Torenia was placed on MS medium amended with 2.28 M zeatin to induce new adventitious shoots and plantlets. Newly regenerated plantlets were acclimated to greenhouse conditions and evaluated for resistance to the pest to which they were subjected in vitro. Highly significant differences in pest numbers were found in somaclones for both the two-spotted spidermite and greenhouse whitefly when compared to control plants. A wide range of variability was observed among the somaclonal population. There were significantly fewer mite eggs laid on plants regenerated from in vitro cultures screened with two-spotted spidermites than on seed sown controls. Regenerants from cultures screened with whiteflies in vitro had fewer eggs, immatures and live adults than controls.Abbreviations BA benzyladenine - IBA indolebutyric acid - 2,4-d 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog salt medium Storrs Agricultural Research Station Scientific Publication 1641.  相似文献   
75.
Stahlberg R  Cosgrove DJ 《Planta》1996,200(4):416-425
Slow wave potentials (SWPs) are transient depolarizations which propagate substantial distances from their point of origin. They were induced in the epidermal cells of pea epicotyls by injurious methods such as root excision and heat treatment, as well as by externally applied defined steps in xylem pressure (Px) in the absence of wounding. The common principle of induction was a rapid increase in Px. Such a stimulus appeared under natural conditions after (i) bending of the epicotyl, (ii) wounding of the epidermis, (iii) rewatering of dehydrated roots, and (iv) embolism. The induced depolarization was not associated with a change in cell input resistance. This result and the ineffectiveness of ion channel blockers point to H(+)-pumps rather than ion channels as the ionic basis of the SWP. Stimuli such as excision, heat treatment and pressure steps, which generate SWPs, caused a transient increase in the fluorescence intensity of epicotyls loaded with the pH-indicator DM-NERF, a 2',7'-dimethyl derivative of rhodol, but not of those loaded with the pH indicator 2',7'bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Matching kinetics of depolarization and pH response identify a transient inactivation of proton pumps in the plasma membrane as the causal mechanism of the SWP. Feeding pump inhibitors to the cut surface of excised epicotyls failed to chemically simulate a SWP; cyanide, azide and 2,4-dinitrophenol caused sustained, local depolarizations which did not propagate. Of all tested substances, only sodium cholate caused a transient and propagating depolarization whose arrival in the growing region of the epicotyl coincided with a transient growth rate reduction.  相似文献   
76.
The influence exerted by Pseudomonas fluorescens, strain 63-28R, in stimulating plant defense reactions was investigated using an in-vitro system in which Ri T-DNA-transformed pea (Pisum sativum L.) roots were subsequently infected with Pythium ultimum. Cytological investigations of samples from P. fluorescens-inoculated roots revealed that the bacteria multiplied abundantly at the root surface and colonized a small number of epidermal and cortical cells. Penetration of the epidermis occurred through the openings made by the disruption of the fibrillar network at the junction of adjacent epidermal cell walls. Direct cell wall penetration was never observed and bacterial ingress into the root tissues proceeded via an intercellular route. Striking differences in the extent of fungal colonization were observed between bacterized and non-bacterized pea roots following inoculation with P. ultimum. In non-bacterized roots, the pathogen multiplied abundantly through most of the tissues while in bacterized roots, pathogen growth was restricted to the epidermis and the outer cortex. At the root surface, the bacteria interacted with the pathogen, in a way similar to that observed in dual culture tests. Most Pythium cells were severely damaged but fungal penetration by the bacteria was never observed. Droplets of the amorphous material formed upon interaction between the bacteria and the host root were frequently found at the fungal cell surface. Incubation of sections with a -1,4-exoglucanase-gold complex revealed that the cell wall of markedly altered Pythium hyphae was structurally preserved. Successful penetration of the root epidermis was achieved by the few hyphae of P. ultimum that could escape the first defensive line in the rhizosphere. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. The unusual occurrence of polymorphic wall appositions along the host epidermal cells was an indication that the host plant was signalled to defend itself through the elaboration of physical barriers.Abbreviations AGL Aplysia gonad lectin - PGPR plant growth-promoting rhizobacteria The authors wish to thank Sylvain Noël for excellent technical assistance. This study was supported by grants from the Fonds Québécois pour la formation de chercheurs et l'Aide à la Recherche (FCAR), the Natural Sciences and Engineering Council of Canada (NSERC) and the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie (SYNERGIE).  相似文献   
77.
Resistance to Plasmodiophora brassicae Woron, the causal fungus of clubroot, was examined in an F2 population of a cross between a clubroot-resistant kale (Brassica oleracea L. var. acephala) and a susceptible cauliflower (Brassica oleracea L. var. botrytis). QTL detection was performed with RAPD markers. Two resistance notations, carried out at different times after inoculation, were used. Three markers were associated with these two notations and three were specifically linked to only one notation. QTL analysis suggests the existence of at least two genetic mechanisms implicated in the resistance phenomenon.  相似文献   
78.
Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.  相似文献   
79.
We have examined the genetics of systemic resistance in Phaseolus vulgaris to azuki bean mosaic virus (AzMV) and cowpea aphid-borne mosaic virus (CABMV) and the relationship of this resistance to a phenotypically similar resistance to watermelon mosaic virus (WMV) and soybean mosaic virus (SMV). In P. vulgaris cv Great Northern 1140 (GN1140), resistance to SMV and WMV has been attributed to the genes Smv and Wmv, respectively, which have been shown to segregate as a unit. Systemic resistance to AzMV is conferred by two incompletely dominant alleles, Azm1 and Azm2, at unlinked loci. At least three resistance alleles must be present at these two loci for systemic resistance to be expressed in the plant. Systemic resistance to CABMV in GN 1140 is conditioned by a dominant allele that has been designated Cam2. Under some environmental conditions, a recessive allele at an unlinked locus, cam3, also controls a resistant response to CABMV. Resistance to AzMV and CABMV does not assort independently from Wmv/Smv, but also does not consistently cosegregate, suggesting that perhaps in each case one of the factors involved in resistance is associated with Smv/Wmv.  相似文献   
80.
Markers for selection of the rice Xa21 disease resistance gene   总被引:8,自引:0,他引:8  
Six molecular markers were mapped to a 7.4-cM region of rice chromosome 11 containing the Xa21 gene, which confers resistance to the pathogen Xanthomonas oryzae pv oryzae. Three markers, RG103, 248 and 818, co-segregated with Xa21 in a population of 1141 plants. Multiple copies of all marker loci were present within the region that was introgressed from Oryza longistaminata into O. sativa. The marker loci were cloned and primers were designed that defined sequence-tagged sites. Physical mapping of the three tightly linked central markers revealed that RG103, the marker that hybridizes to the Xa21 gene, resides on a separate DNA fragment from the other two markers.Disclaimer: Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号