首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1017篇
  免费   79篇
  国内免费   73篇
  1169篇
  2024年   5篇
  2023年   24篇
  2022年   27篇
  2021年   31篇
  2020年   52篇
  2019年   55篇
  2018年   44篇
  2017年   48篇
  2016年   39篇
  2015年   39篇
  2014年   72篇
  2013年   129篇
  2012年   61篇
  2011年   65篇
  2010年   31篇
  2009年   51篇
  2008年   71篇
  2007年   55篇
  2006年   65篇
  2005年   36篇
  2004年   31篇
  2003年   37篇
  2002年   14篇
  2001年   18篇
  2000年   15篇
  1999年   14篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
排序方式: 共有1169条查询结果,搜索用时 15 毫秒
51.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
52.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   
53.
Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting.  相似文献   
54.

Background

Injection localized amyloidosis is one of the most prevalent disorders in type II diabetes mellitus (TIIDM) patients relying on insulin injections. Previous studies have reported that nanoparticles can play a role in the amyloidogenic process of proteins. Hence, the present study deals with the effect of zinc oxide nanoparticles (ZnONP) on the amyloidogenicity and cytotoxicity of insulin.

Methods

ZnONP is synthesised and characterized using XRD, Zeta Sizer, UV-Visible spectroscope and TEM. The characterization is followed by ZnONP interaction with insulin, which is studied employing fluorescence spectroscopes, isothermal titration calorimetry and molecular dynamics simulations. The interaction leads insulin conformational rearrangement into amyloid-like fibril, which is studied using thioflavin T dye binding assay, circular dichroism spectroscopy and TEM, followed by cytotoxicity propensity using Alamar Blue dye reduction assay.

Results

Insulin has very weak interaction with ZnONP interface. Insulin at studied concentration forms amorphous aggregates at physiological pH, whereas in presence of ZnONP interface amyloid-like fibrils are formed. While the amyloid-like fibrils are cytotoxic to MIN6 and THP-1 cell lines, insulin and ZnONP individual solutions and their fresh mixtures enhance the cells proliferation.

Conclusions

The presence of ZnONP interface enhances insulin fibrillation at physiological pH by providing a favourable template for the nucleation and growth of insulin amyloids.

General significance

The studied protein-nanoparticle system from protein conformational dynamics point of view throws caution over nanoparticle use in biological applications, especially in vivo applications, considering the amyloidosis a very slow but non-curable degenerative disease.  相似文献   
55.
Two mucoadhesive thiolated polymers were synthesized by the covalent attachment of homocysteine thiolactone (HT) to chitosan and N,N,N-trimethyl-chitosan (TM-chitosan) at various chitosan:HT ratios. The amount of thiol and disulphide groups immobilized on the chitosan influenced the polymer's mucoadhesion positively and negatively, respectively, with the optimal chitosan:HT (w/w) ratio being found to be 1:0.1. The interaction between mucin and chitosan and its three derivatives was highest for the thiolated chitosan derivatives but was pH dependent. HT-chitosan and TM-HT-chitosan, with the thiol groups of 64.15 and 32.48 μmol/g, respectively, displayed a 3.67- and 6.33-fold stronger mucoadhesive property compared to that of the unmodified chitosan at pH 1.2, but these differences were only ∼1.7-fold at pH 6.4. The swelling properties of TM-HT-chitosan and HT-chitosan were higher than that of chitosan and TM-chitosan, attaining a swelling ratio of up to 240% and 140%, respectively, at pH 1.2 within 2 h.  相似文献   
56.
In this study, the biodegradable mucoadhesive 4-carboxybenzensulfonamide chitosan (4-CBS–chitosan)/poly (lactic acid) (PLA) nanoparticles were fabricated by the electrospray ionization technique for enhancing anti-topoisomerase II (Topo II) activity. The obtained (4-CBS–chitosan/PLA)-DOX nanoparticles were characterized using SEM, particle size analyzer. We emphasis on encapsulation efficiency, in vitro drug release behavior and also performed in vitro studies of Topo II inhibitory activity using gel electrophoresis. In addition, the cytotoxicity of the 4-CBS–chitosan/PLA nanoparticles using MTT assay was also studied. The mean particle size of spherical shaped (4-CBS–chitosan/PLA)-DOX is less than 300 nm. The DOX loaded 4-CBS–chitosan/PLA composite nanoparticles produced high entrapment efficiency of 85.8% and provided the prolonged release of DOX extended to 26 days and also still had strong Topo II inhibitory activity up to 77.4%. Overall, it was shown that 4-CBS–chitosan/PLA nanoparticles could be promising carriers for controlled delivery of anticancer drugs.  相似文献   
57.
The compatibility of chitosan (CS) and poly(vinyl pyrrolidone) was investigated by molecular dynamic (MD) simulations using the Flory–Huggins theory. The specific interactions in blends were studied by the radial distribution function (RDF). The Flory–Huggins interaction parameter, χ, was calculated at 298 K to assess the blend compatibility at different component ratios in the polymers. Miscibility was observed for blends with more than 50% of CS in the molar fraction, while immiscibility was prevalent at the molar fraction of CS between 10 and 50% of CS. Miscibility between poly(N-vinyl-2-pyrrolidone) (PVP) and CS polymers is attributed to the hydrogen bond formation of the –C = O group of PVP and the –CH2OH groups of CS. This was further confirmed by MD simulations of RDFs for groups or atoms that are involved in interactions. These results are correlated well to obtain more realistic information on interactions involved as a function of blend composition.  相似文献   
58.
《Molecular membrane biology》2013,30(4-6):190-205
Abstract

Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the natural clearance process that tend to decrease the circulation time of foreign particles all lessen the probability of successful carrier interaction with the vascular wall. An effective vascular-targeted drug delivery system must be able to navigate through the bloodstream while avoiding immune clearance, attach to the vascular wall, and release its therapeutic cargo at the intended location. This review will summarize and analyze current literature reporting on (1) nanocarrier fabrication methods and materials that allow for optimum therapeutic encapsulation, protection, and release; (2) localization and binding dynamics of nanocarriers as influenced by hemodynamics and blood rheology in medium-to-large vessels; (3) blood cells' responses to various types of nanocarrier compositions and its effects on particle circulation time; and (4) properties that affect nanocarrier internalization at the target site.  相似文献   
59.
Pathogen‐/microbe‐associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan‐triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho‐histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan‐treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan‐triggered immune‐responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor‐like kinases, and 65 chitosan‐triggered immune‐responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune‐related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan‐responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.  相似文献   
60.
The morphological stability of sharp-edged silver nanoparticles is examined by the classical molecular dynamics (MD) simulations. The crystalline structure and the perfect fcc atom packing of a series of silver nanocubes (AgNC) of different sizes varying from 63 up to 1099 atoms are compared against quasi-spherical nanoparticles of the same sizes at temperature 303 K. Our MD simulations demonstrate that starting from the preformed perfect crystalline structures the cubic shape is preserved for AgNCs composed of 365–1099 atoms. Surprisingly, the rapid loss of the cubic shape morphology and transformation into the non-fcc-structure are found for smaller AgNCs composed of less than ~256 atoms. No such loss of the preformed crystalline structure is seen for quasi-spherical nanoparticles composed of 38–1007 atoms. The analysis of the temperature dependence and the binding energy of outermost Ag surface atoms suggests that the loss of the perfect cubic shape, rounding and smoothing of sharp edges and corners are driven by the tendency towards the increase in their coordination number. In addition, we revealed that AgNC1099 partially loses its sharp edges and corners in the aqueous environment; however, the polymer coating with poly(vinyl alcohol) (PVA) was able to preserve the well-defined cubic morphology. Finally, these results help improve the understanding of the role of surface capping agents in solution phase synthesis of Ag nanocubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号