首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2732篇
  免费   243篇
  国内免费   97篇
  2024年   5篇
  2023年   68篇
  2022年   88篇
  2021年   121篇
  2020年   114篇
  2019年   106篇
  2018年   98篇
  2017年   80篇
  2016年   74篇
  2015年   92篇
  2014年   97篇
  2013年   191篇
  2012年   93篇
  2011年   100篇
  2010年   99篇
  2009年   87篇
  2008年   82篇
  2007年   113篇
  2006年   103篇
  2005年   105篇
  2004年   97篇
  2003年   110篇
  2002年   89篇
  2001年   61篇
  2000年   29篇
  1999年   58篇
  1998年   49篇
  1997年   81篇
  1996年   61篇
  1995年   67篇
  1994年   63篇
  1993年   72篇
  1992年   56篇
  1991年   42篇
  1990年   22篇
  1989年   36篇
  1988年   16篇
  1987年   9篇
  1986年   12篇
  1985年   10篇
  1984年   20篇
  1983年   14篇
  1982年   19篇
  1981年   16篇
  1980年   12篇
  1979年   21篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1950年   1篇
排序方式: 共有3072条查询结果,搜索用时 15 毫秒
41.
Protein liquid-liquid phase separation drives the dynamic assembly of membraneless organelles for fulfilling different physiological functions. Under diseased condition, protein may undergo liquid-to-solid condensation to form pathological amyloid aggregates closely associated with neurodegenerative diseases. Chemical probe serves as an important chemical tool not only for exploring the basic principle of the dynamic assembly of different protein condensates in vitro and in cell but also for clinical diagnosis and therapeutics of the related diseases. In this review, we first introduce chemical probes to image and regulate protein condensates. Then, we summarized three different categories of chemical probes including general amyloid dye, selective positron emission tomography tracer, and disaggregating binder, which feature distinct interaction pattern and activity upon binding to different pathological amyloid fibrillar aggregates. Next, we discuss the development of chemical probes for tracking protein amorphous aggregates in cells. Finally, we point out future direction in expanding the probes’ chemical space and applications.  相似文献   
42.
陈林  宋丽 《生物工程学报》2023,39(2):472-487
流式细胞术是通过对液流中各种荧光标记的颗粒进行多参数快速高效的定性或定量测定的方法,在科学研究的多个领域发挥重要作用。然而,由于植物组织及细胞壁和次生代谢产物等细胞的特殊成分和结构,限制了其在植物研究领域的应用。本文在介绍流式细胞仪发展和组成分类的基础上,着重讨论了流式细胞术在植物领域的应用、研究进展及应用限制,进而展望该研究领域的发展趋势,为拓宽植物流式细胞术的潜在应用范围提供新的思考方向。  相似文献   
43.
Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or “empty” capsids, represent a product-related impurity. As a result, a robust and scalable method to enrich full capsids is crucial to provide patients with as much potentially active product as possible. Anion exchange chromatography has emerged as a highly utilized method for full capsid enrichment across many serotypes due to its ease of use, robustness, and scalability. However, achieving sufficient resolution between the full and empty capsids is not trivial. In this work, anion exchange chromatography was used to achieve empty and full capsid resolution for adeno-associated virus serotype 5. A salt gradient screen of multiple salts with varied valency and Hofmeister series properties was performed to determine optimal peak resolution and aggregate reduction. Dual salt effects were evaluated on the same product and process attributes to identify any synergies with the use of mixed ion gradients. The modified process provided as high as ≥75% AAV5 full capsids (≥3-fold enrichment based on the percent full in the feed stream) with near baseline separation of empty capsids and achieved an overall vector genome step yield of >65%.  相似文献   
44.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and “interactomes” of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly (ethylene glycol) amine (mPEG-NH2). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.  相似文献   
45.
In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1, 2, 3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4, 5, 6, 7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ~25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.  相似文献   
46.
ML-1035, 4-amino-5-chloro-2-[2-(methylsulfinyl)ethoxy]-N-[2-(diethylamino)ethyl]benzamide, is a sulfoxide compound and a racemic gastroprokinetic agent with a chiral center at the sulfur atom. We have investigated the disposition kinetics of (R)-ML-1035 sulfoxide (R) and (S)-ML-1035 sulfoxide (S) after the single enantiomers and the racemic mixture were administered to rats in separate experiments. There was no noticeable chiral inversion after either enantiomer dose. Both enantiomers were rapidly absorbed. After dosing with enantiomers or with the racemate, the resulting plasma concentration-time curve of R was closely parallel to that of S in both intravenous and oral experiments, suggesting that the two enantiomers have approximately the same disposition kinetics. After intravenous enantiomer doses, only S underwent conversion to sulfide, suggesting that sulfidation in the liver is enantioselective. However, the enantioselective sulfidation after intravenous dosing did not introduce a difference in the global plasma disposition profiles between R and S, since the reduction reaction is a minor metabolic process. Other metabolic reactions such as sulfonation and mono-N-desethylations were not enantioselective. After oral administration, conversion to sulfide was observed for both enantioners, implicating the existence of a nonhepatic pathway in sulfidation. Administration of a prochiral sulfide dose was associated with an enantioselective sulfoxidation, in which the R/S concentration ratios increased as a function of time. In addition, enantiomeric interaction causing changes in pharmacokinetic parameters was observed after the oral racemate dose, while the interaction is negligible after an intravenous racemate dose, indicating a route dependency in enantiomeric interaction. © 1993 Wiley-Liss, Inc.  相似文献   
47.
Structure–interaction relationships, stereoselectivity, and solubility enhancement in inclusion compexation of β-cyclodextrins (CDs) with some racemic and enantiomerically pure 1,4-dihydropyridine derivatives (DHPs) were investigated. 1:1 and 1:2 (mole ratio) complexes were prepared and characterized by X-ray powder diffraction, differential scanning calorimetry (DSC), MS-FAB spectrometry, 1H-NMR spectroscopy, water and phase solubility. The solubility studies have revealed different complexation equilibria for optically pure DHP enantiomers, and corresponding racemic mixtures in water solutions. By means of 1H-NMR chemical shift measurements, the inclusion of aromatic fragments of racemic and enantiomerically pure DHP molecules within the cavities of different CDs was elucidated. Considerable stereoselectivity in complexation interactions was observed. The results indicate the potential use of cyclodextrins as chiral selectors for enantiomeric resolution of 1,4-DHP calcium antagonists. © 1993 Wiley-Liss, Inc.  相似文献   
48.
In order to make a preliminary study of substituent effects on the rate and enantioselectivity obtained in esterolytic reactions catalyzed by a lipase from Candida rugosa, a series of racemic esters, derived from some α-alkyl and α-halo phenylacetic acids, were prepared. The reactions were studied at pH 6.0 and 50°C under which conditions uncatalyzed hydrolysis was relatively slow. Reaction samples were studied at different points of time by means of analytical chiral reversed-phase liquid chromatography, which permitted the simultaneous determination of product enantiomeric excess and of the degree of total ester hydrolysis. These data were then used to calculate initial rates as well as enantioselectivity. An increase of the steric bulk of the α-substituent was found to highly decrease the rate of the reaction. On the other hand, rates were higher for the p-nitrophenyl esters than for the corresponding 2-chloroethyl esters. Consistently, the enantioselectivity was found to be higher for the latter type of ester. The esters of the α-halo (bromo and chloro) phenylacetic acids gave mandelic acid as the final product. This was caused by a rapid solvolysis of the α-halo phenylacetic acid initially formed. © 1993 Wiley-Liss, Inc.  相似文献   
49.
A sensitive and reproducible HPLC method utilizing a commercially available chiral α1-acid glycoprotein (AGP) phase has been developed to separate and quantify the enantiomers of nicotine. The method is suitable for routine use as indicated by column life. The quantification of (R/S:0.05/99.95)-nicotine or (R/S:99/1)-nicotine was possible. In addition, the separation or at least partial separation of the enantiomers of nornicotine and nornicotine-derived compounds was achieved. © 1993 Wiley-Liss, Inc.  相似文献   
50.
In order to cope with the increasing number of publications on the separation of enantiomers by chromatography on a chiral stationary phase, the graphical molecular database CHIRBASE was created. In the present state, the database package covers information (structural, bibiographic, and chromatographic data) on liquid-, supercritical fluid-, and gas chromatography; other methods will follow. CHIRBASE, running on the MDL software Chembase®, meets the requirements of contemporary information management in the chemical and pharmaceutical industry. (Detailed information including a demo-version of each part of CHIRBASE can be obtained from the authors on request.) © 1993 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号