首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   48篇
  国内免费   27篇
  2024年   2篇
  2023年   5篇
  2022年   11篇
  2021年   16篇
  2020年   15篇
  2019年   4篇
  2018年   7篇
  2017年   15篇
  2016年   11篇
  2015年   13篇
  2014年   23篇
  2013年   32篇
  2012年   17篇
  2011年   24篇
  2010年   11篇
  2009年   7篇
  2008年   17篇
  2007年   15篇
  2006年   25篇
  2005年   15篇
  2004年   34篇
  2003年   25篇
  2002年   25篇
  2001年   21篇
  2000年   8篇
  1999年   16篇
  1998年   8篇
  1997年   10篇
  1996年   12篇
  1995年   9篇
  1994年   6篇
  1993年   14篇
  1992年   5篇
  1991年   9篇
  1990年   3篇
  1989年   1篇
  1988年   12篇
  1987年   1篇
  1986年   3篇
  1985年   8篇
  1984年   6篇
  1983年   2篇
  1982年   8篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有539条查询结果,搜索用时 15 毫秒
51.
Integrin regulation of neutrophils is essential for appropriate adhesion and transmigration into tissues. Vav proteins are Rho family guanine nucleotide exchange factors that become tyrosine phosphorylated in response to adhesion. Using Vav1/Vav3-deficient neutrophils (Vav1/3ko), we show that Vav proteins are required for multiple beta2 integrin-dependent functions, including sustained adhesion, spreading, and complement-mediated phagocytosis. These defects are not attributable to a lack of initial beta2 activation as Vav1/3ko neutrophils undergo chemoattractant-induced arrest on intercellular adhesion molecule-1 under flow. Accordingly, in vivo, Vav1/3ko leukocytes arrest on venular endothelium yet are unable to sustain adherence. Thus, Vav proteins are specifically required for stable adhesion. beta2-induced activation of Cdc42, Rac1, and RhoA is defective in Vav1/3ko neutrophils, and phosphorylation of Pyk2, paxillin, and Akt is also significantly reduced. In contrast, Vav proteins are largely dispensable for G protein-coupled receptor-induced signaling events and chemotaxis. Thus, Vav proteins play an essential role coupling beta2 to Rho GTPases and regulating multiple integrin-induced events important in leukocyte adhesion and phagocytosis.  相似文献   
52.
Spatially restricted activation of signaling molecules governs critical aspects of cell migration; the mechanism by which this is achieved nonetheless remains unknown. Using time-lapse confocal microscopy, we analyzed dynamic redistribution of lipid rafts in chemoattractant-stimulated leukocytes expressing glycosyl phosphatidylinositol-anchored green fluorescent protein (GFP-GPI). Chemoattractants induced persistent GFP-GPI redistribution to the leading edge raft (L raft) and uropod rafts of Jurkat, HL60, and dimethyl sulfoxide-differentiated HL60 cells in a pertussis toxin-sensitive, actin-dependent manner. A transmembrane, nonraft GFP protein was distributed homogeneously in moving cells. A GFP-CCR5 chimera, which partitions in L rafts, accumulated at the leading edge, and CCR5 redistribution coincided with recruitment and activation of phosphatidylinositol-3 kinase gamma in L rafts in polarized, moving cells. Membrane cholesterol depletion impeded raft redistribution and asymmetric recruitment of PI3K to the cell side facing the chemoattractant source. This is the first direct evidence that lipid rafts order spatial signaling in moving mammalian cells, by concentrating the gradient sensing machinery at the leading edge.  相似文献   
53.
The chemotaxis system of Escherichia coli makes use of an extended two-component sensory response pathway in which CheA, an autophosphorylating protein histidine kinase (PHK) rapidly passes its phosphoryl group to CheY, a phospho-accepting response regulator protein (RR). The CheA-->CheY phospho-transfer reaction is 100-1000 times faster than the His-->Asp phospho-relays that operate in other (non-chemotaxis) two-component regulatory systems, suggesting that CheA and CheY have unique features that enhance His-->Asp phospho-transfer kinetics. One such feature could be the P2 domain of CheA. P2 encompasses a binding site for CheY, but an analogous RR-binding domain is not found in other PHKs. In previous work, we removed P2 from CheA, and this decreased the catalytic efficiency of CheA-->CheY phospho-transfer by a factor of 50-100. Here we examined the kinetics of the binding interactions between CheY and P2. The rapid association reaction (k(assn) approximately 10(8)M(-1)s(-1) at 25 degrees C and micro=0.03 M) exhibited a simple first-order dependence on P2 concentration and appeared to be largely diffusion-limited. Ionic strength (micro) had a moderate effect on k(assn) in a manner predictable based on the calculated electrostatic interaction energy of the protein binding surfaces and the expected Debye-Hückel shielding. The speed of binding reflects, in part, electrostatic interactions, but there is also an important contribution from the inherent plasticity of the complex and the resulting flexibility that this allows during the process of complex formation. Our results support the idea that the P2 domain of CheA contributes to the overall speed of phospho-transfer by promoting rapid association between CheY and CheA. However, this alone does not account for the ability of the chemotaxis system to operate much more rapidly than other two-component systems: k(cat) differences indicate that CheA and CheY also achieve the chemical events of phospho-transfer more rapidly than do PHK-RR pairs of slower systems.  相似文献   
54.
The motility and chemotaxis systems are critical for the virulence of leptospires. In this study, the phylogenetic profiles method was used to predict the interaction of chemotaxis proteins. It was shown that CheW1 links to CheA1, CheY, CheB and CheW2, CheW3 links to CheA2, MCP (LA2426), CheB3 and CheD1; and CheW2 links only to CheW1. The similarity analysis demonstrated that CheW2 of Leptospira interrogans strain Lai had poor homology with Chew of Escherichia coli in the region of residues 30-50. In order to verify the function of these proteins, the putative cheW genes were cloned into pQE31 vector and expressed in wild-type E. coli strain RP437 or chew defective strain RP4606. The swarming results indicated that CheW1 and CheW3 could restore swarming of RP4606 while CheW2 could not. Overexpression of CheW1 and CheW3 in RP437 inhibited the swarming of RP437, whereas the inhibitory effect of CheW2 was much lower. Therefore, we presumed that CheW1 and CheW3 might have the function of CheW while CheW2 does not. The existence of multiple copies of chemotaxis homologue genes suggested that L. interrogans strain Lai might have a more complex chemosensory pathway.  相似文献   
55.
Bacteria utilize quorum sensing to regulate the expression of cell density-dependant phenotypes such as biofilm formation and virulence. Zoospores of the marine alga Ulva intestinalis exploit the acyl-homoserine lactone (AHL) quorum sensing system to identify bacterial biofilms for preferential settlement. Here, we demonstrate that AHLs act as strong chemoattractants for Ulva zoospores. Chemoattraction does not involve a chemotactic orientation towards the AHL source. Instead, it occurs through a chemokinesis in which zoospore swimming speed is rapidly decreased in the presence of AHLs. The chemoresponse to AHLs was dependant on the nature of the acyl side chain, with N-(3-oxododecanoyl)-homoserine lactone (30-C12-HSL) being the most effective signal molecule. Mean zoospore swimming speed decreased more rapidly over wild-type biofilms of the marine bacteria Vibrio anguillarum relative to biofilms of the vanM mutant, in which AHL synthesis is disrupted. These data implicate a role for AHL-mediated chemokinesis in the location and preferential settlement of Ulva zoospores on marine bacterial assemblages. Exposure to AHLs did not inhibit the negative phototaxis of Ulva zoospores, indicating that chemoattraction to bacterial biofilms does not preclude the response to a light stimulus in substrate location.  相似文献   
56.
The immune system depends on chemokines to recruit lymphocytes to tissues in inflammatory diseases. This study identifies PDE8 as a new target for inhibition of chemotaxis of activated lymphocytes. Chemotactic responses of unstimulated and concanavalin A-stimulated mouse splenocytes and their modulation by agents that stimulate the cAMP signaling pathway were compared. Dibutyryl cAMP inhibited migration of both cell types. In contrast, forskolin and 3-isobutyl-1-methylxanthine each inhibited migration of unstimulated splenocytes, with little effect on migration of stimulated splenocytes. Only dipyridamole alone, a PDE inhibitor capable of inhibiting PDE8, strongly inhibited migration of stimulated and unstimulated splenocytes and this inhibition was enhanced by forskolin and reversed by a PKA antagonist. Following concanavalin A stimulation, mRNA for PDE8A1 was induced. These results suggest that in employing PDE inhibitor therapy for inflammatory illnesses, inhibition of PDE8 may be required to inhibit migration of activated lymphocytes to achieve a full therapeutic effect.  相似文献   
57.
Chemotactic bacteria can be attracted to electron donors they consume. In systems where donor is heterogeneously distributed, chemotaxis can lead to enhanced removal of donor relative to that achieved in the absence of chemotaxis. However, simultaneous consumption of an electron acceptor may result in the formation of an acceptor gradient to which the bacteria also respond, thus diminishing the positive effect of chemotaxis. Depletion of an electron acceptor can also reduce the rate of electron donor consumption in addition to its effect on chemotaxis. In this study, we examined the effect of oxygen on chemotaxis to naphthalene and on naphthalene consumption by Pseudomonas putida G7. The organism was able to move up an oxygen gradient when there was a naphthalene gradient in the opposite direction. In the absence of an oxygen gradient, low levels of oxygen attenuated chemotaxis to naphthalene but did not affect random motility. The rate of naphthalene consumption decreased at dissolved oxygen concentrations similar to those at which chemotaxis was attenuated. These results suggest that low dissolved oxygen concentrations can reduce naphthalene removal by P. putida G7 in systems where naphthalene is heterogeneously distributed by simultaneously attenuating chemotactic motion toward naphthalene and decreasing the rate of naphthalene degradation.  相似文献   
58.
The extension of microglial processes toward injured sites in the brain is triggered by the stimulation of the purinergic receptor P2Y(12) by extracellular ATP. We recently showed that P2Y(12) stimulation by ATP induces microglial process extension in collagen gels. In the present study, we found that a P2Y(12) agonist, 2-methylthio-ADP (2MeSADP), failed to induce the process extension of microglia in collagen gels and that co-stimulation with adenosine, a phosphohydrolytic derivative of ATP, and 2MeSADP restored the chemotactic process extension. An adenosine A3 receptor (A3R)-selective agonist restored the chemotactic process extension, but other receptor subtype agonists did not. The removal of adenosine by adenosine deaminase and the blocking of A3R by an A3R-selective antagonist inhibited ADP-induced process extension. The A3R antagonist inhibited ADP-induced microglial migration, and an A3R agonist promoted 2MeSADP-stimulated migration. ADP and the A3R agonist activated Jun N-terminal kinase in microglia, and a Jun N-terminal kinase inhibitor inhibited the ADP-induced process extension. An RT-PCR analysis showed that A1R and A3R were expressed by microglia sorted from adult rat brains and that the A2AR expression level was very low. These results suggested that A3R signaling may be involved in the ADP-induced process extension and migration of microglia.  相似文献   
59.
A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1-2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes.  相似文献   
60.
In the present study, we report synthesis and biological evaluation of the N‐Boc‐protected tripeptides 4a–l and N‐For protected tripeptides 5a–l as new For‐Met‐Leu‐Phe‐OMe (fMLF‐OMe) analogues. All the new ligands are characterized by the C‐terminal Phe residue variously substituted at position 4 of the aromatic ring. The agonism of 5a–l and the antagonism of 4a–l (chemotaxis, superoxide anion production, lysozyme release as well as receptor binding affinity) have been examined on human neutrophils. No synthesized compounds has higher activity than the standard fMLF‐OMe tripeptide to stimulate chemotaxis, although compounds 5a and 5c with ‐CH3 and ‐C(CH3)3, respectively, in position 4 on the aromatic ring, are better than the standard tripeptide to stimulate the production of superoxide anion, in higher concentration. Compounds 4f and 4i , containing ‐F and ‐I in position 4, respectively, on the aromatic ring of phenylalanine, exhibit significant chemotactic antagonism. The influence of the different substitution at the position 4 on the aromatic ring of phenylalanine is discussed. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号