首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   19篇
  2024年   3篇
  2022年   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有42条查询结果,搜索用时 0 毫秒
41.
A novel Cu(II) complex chemosensor for hydrogen sulfide with azo as the colorimetric group has been synthesized. The complex and ligand crystals were obtained and the molecular structures were characterized by X‐ray diffraction and Electrospray ionization High resolution mass spectrometer (ESI‐HRMS). The photophysical and recognition properties were examined. The complex can recognize S2?, with an obvious color change from yellow to red based on a copper ion complex displacement mechanism. By contrast, no obvious changes were observed in the presence of other anions (AcO?, H2PO4?, F?, Cl?, Br? and I?). We present a simple, easily prepared, yet efficient, inorganic reaction‐based sensor for the detection of S2?. The complex should have many chemical and analytical applications in the sensing of hydrogen sulfide.  相似文献   
42.
Two new Schiff bases were synthesized from 1-(2,4-dihydroxyphenyl)ethanone and pyridine derivatives. Both compounds were characterized using infrared, UV–Vis., 1H NMR, 13C NMR and mass spectral studies. Density functional theory (DFT) calculations were performed for both the Schiff bases with 6-31G(d, p) as the basis set. Vibrational frequencies calculated using the theoretical method were in good agreement with the experimental values. Both the Schiff bases were highly fluorescent in nature. The cation-recognizing profile of the compounds was investigated in aqueous methanol medium. The Schiff base 4-(1-(pyridin-4-ylimino)ethyl)benzene-1,3-diol (PYEB) was found to interact with Fe(III) and Cu(II) ions, whereas the Schiff base 4,4′-((pyridine-2,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol) (PDEB) was found to detect Cu(II) ions. The mechanism of recognition was established as combined excited state intramolecular proton transfer (ESIPT)–chelation-enhanced fluorescence (CHEF) effect and chelation-enhanced quenching (CHEQ) process for the detection of Fe(III) and Cu(II) ions, respectively. The stability constant of the metal complexes formed during the sensing process was determined. The limit of detection for Fe(III) and Cu(II) ions with respect to Schiff base PYEB was found to be 1.64 × 10−6 and 2.16 × 10−7 M, respectively. With respect to Schiff base PDEB, the limit of detection for Cu(II) ion was found to be 4.54 × 10−4 M. The Cu(II) ion sensing property of the Schiff base PDEB was applied in bioimaging studies for the detection of HeLa cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号