首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5337篇
  免费   245篇
  国内免费   129篇
  2024年   3篇
  2023年   53篇
  2022年   85篇
  2021年   102篇
  2020年   103篇
  2019年   115篇
  2018年   127篇
  2017年   118篇
  2016年   107篇
  2015年   168篇
  2014年   254篇
  2013年   346篇
  2012年   137篇
  2011年   208篇
  2010年   175篇
  2009年   218篇
  2008年   278篇
  2007年   293篇
  2006年   272篇
  2005年   239篇
  2004年   243篇
  2003年   214篇
  2002年   191篇
  2001年   126篇
  2000年   139篇
  1999年   139篇
  1998年   131篇
  1997年   159篇
  1996年   109篇
  1995年   102篇
  1994年   87篇
  1993年   99篇
  1992年   91篇
  1991年   70篇
  1990年   72篇
  1989年   67篇
  1988年   60篇
  1987年   41篇
  1986年   26篇
  1985年   39篇
  1984年   33篇
  1983年   18篇
  1982年   21篇
  1981年   12篇
  1980年   7篇
  1979年   7篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有5711条查询结果,搜索用时 31 毫秒
71.
Summary Elementary Na+ currents were recorded at 19°C during 220-msec lasting step depolarizations in cell-attached and inside-out patches from cultured neonatal rat cardiocytes in order to study the modifying influence of iodate, bromate and glutaraldehyde on single cardiac Na+ channels.Iodate (10 mmol/liter) removed Na+ inactivation and caused repetitive, burst-like channel activity after treating the cytoplasmic channel surface. In contrast to normal Na+ channels under control conditions, iodate-modified Na+ channels attain two conducting states, a short-lasting one with a voltage-independent lifetime close to 1 msec and, likewise tested between –50 and +10 mV, a long-lasting one being apparently exponentially dependent on voltage. Channel modification by bromate (10 mmol/liter) and glutaraldehyde (0.5 mmol/liter) also included the occurrence of two open states. Also, burst duration depended apparently exponentially on voltage and increased when shifting the membrane in the positive direction, but there was no evidence for two bursting states. Chemically modified Na+ channels retain an apparently normal unitary conductance (12.8±0.5 pS). Of the two substates observed, one of them is remarkable in that it is mostly attained from full-state openings and is very short living in nature; the voltage-independent lifetime was close to 2 msec. Despite removal of inactivation, open probability progressively declined during membrane depolarization. The underlying deactivation process is strongly voltage sensitive but, in contrast to slow Na+ inactivation, responds to a voltage shift in the positive direction with a retardation in kinetics. Chemically modified Na+ channels exhibit a characteristic bursting state much shorter than in DPI-modified Na+ channels, a difference not consistent with the hypothesis of common kinetic properties in noninactivating Na+ channels.  相似文献   
72.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   
73.
Cultures of fetal rat dorsal root ganglion neurons (7 days in culture) were prelabeled with myo-[3H]inositol or [3H]arachidonic acid for 24 h and stimulated with 10 microM bradykinin for time intervals of 5-300 s. The incubation was terminated by addition of 5% perchloric acid to extract inositol phosphates or organic solvent to extract lipids. Inositol phosphates were resolved by anion-exchange HPLC; lipids were resolved by TLC. Bradykinin stimulation resulted in a 10-fold increased accumulation of inositol 1,4,5-trisphosphate (IP3) and inositol bisphosphate (IP2) (fivefold) by 5 s. The increase in IP3 was transient (half maximal by 1 min), whereas stimulated IP2 levels were sustained for several minutes. Even longer term increases were observed in inositol monophosphate. Stimulation also resulted in a threefold increase in arachidonic acid which was preceded by transient increases in diacylglycerol (twofold) and arachidonoyl-monoacylglycerol (threefold). The temporal lag in the accumulation of arachidonic acid with respect to diglyceride and monoglyceride suggested the involvement of di- and monoglyceride lipases in arachidonic acid mobilization. A role for phospholipase A2 is also possible, because pretreatment of cultures with quinacrine partially blocked arachidonic acid release. Bradykinin-stimulated arachidonic acid release was decreased in the presence of calcium channel blockers nifedipine or verapamil (50 microM), or EDTA (2.5 mM). The role of calcium was verified further in that accumulation of phosphatidic acid, diacylglycerol, and arachidonic acid was maximally stimulated by treatment with the calcium ionophore A23187 (20 microM).  相似文献   
74.
Cholesterol as a target for toxins   总被引:2,自引:0,他引:2  
A mechanism is proposed for the way in which cholesterol facilitates channel formation by polyene antibiotics and bacterial protein toxins. Central elements of the model are: (i) interactions between the ring system of the sterol and rigid elements of the polyene or toxin molecule, and (ii) the specific orientation of cholesterol within the membrane.  相似文献   
75.
In order to gain further support for the concept that a homo-oligomeric protein-complex may be sufficient to form a functional ligand-activated ion channel and to explore additional possibilities for the reconstitution of channel activity, a single polypeptide band of the purified neuronal AChR from insects has been electroeluted from SDS-polyacrylamide gels, the SDS removed and the polypeptides incorporated into liposomes. Liposomes were fused into planar lipid bilayers which were subsequently analysed for channel activity. Fluctuations of cation-channels were detected after addition of agonists (carbamylcholine); channel activity was blocked by antagonists (d-tubocurarine). The channels formed by electroeluted polypeptides gave conductance values, as well as kinetic data, quite similar to channels formed by the native receptor protein. Sedimentation experiments using sucrose density gradient centrifugation revealed that a considerable portion of the electroeluted polypeptides assembled during the reconstitution process to form oligomeric complexes with a sedimentation coefficient of about 10 S; thus resembling the native receptor complex. Offprint requests to: W. Hanke  相似文献   
76.
The present study was undertaken to investigate the role of calcium ions (Ca2+) in the induction and secretion of the dengue type 2 virus induced cytotoxic factor and the cytotoxin. This was done by using calcium channel blocking drugs such as verapamil, nifedipine or diltiazem hydrochloride. The production of cytotoxic factor was significantly reduced by treatment of dengue type 2 virus infected mice with verapamil. Similarly, a dosedependent inhibition of the secretion of cytotoxic factor was observed, when spleen cells of the virus-primed mice were treatedin vitro with the 3 calcium channel blockers. The production of cytotoxin by macrophages was abrogated by pretreatment with calcium channel blockers but had little effect on its secretion as shown by treatment of macrophages with verapamil at 1 h after the induction to later periods up to 18 h. The findings thus show that in the induction of both the cytokines Ca2+ plays a critical role; on the other hand it is required for the secretion of the cytotoxic factor but not for that of the cytotoxin.  相似文献   
77.
The calcium-dependent modulation of the affinity of the cyclic nucleotide-gated (CNG) channels for adenosine 3′,5′-cyclic monophosphate (cAMP) was studied in enzymatically dissociated rat olfactory receptor neurons, by recording macroscopic cAMP-activated currents from inside-out patches excised from their dendritic knobs. Upon intracellular addition of 0.2 mm Ca2+ (0.2 Ca) the concentration of cAMP required for the activation of half-maximal current (EC50) was reversibly increased from 3 μm to about 30 μm. This Ca2+-induced affinity shift was insensitive to the calmodulin antagonist, mastoparan, was abolished irreversibly by a 2-min exposure to 3 mm Mg2++ 2 mm EGTA (Mg + EGTA), and was not restored by the application of calmodulin (CAM). Addition of CAM plus 0.2 mm Ca2+ (0.2 Ca + CAM), further reversibly shifted the cAMP affinity from 30 μm to about 200 μm. This affinity shift was not affected by Mg + EGTA exposure, but was reversed by mastoparan. Thus, the former Ca2+-only effect must be mediated by an unknown endogenous factor, distinct from CAM. Removal of this factor also increased the affinity of the channel for CAM. The affinity shift induced by Ca2+-only was maintained in the presence of the nonhydrolyzable cAMP analogue, 8-bromo-cAMP and the phosphatase inhibitor, microcystin-LR, ruling out modulation by phosphodiesterases or phosphatases. Our results indicate that the olfactory CNG channels are modulated by an as yet unidentified factor distinct from CAM. Received: 26 December 1995/Revised: 14 March 1996  相似文献   
78.
The Ca2+-activated maxi K+ channel is predominant in the basolateral membrane of the surface cells in the distal colon. It may play a role in the regulation of the aldosterone-stimulated Na+ reabsorption from the intestinal lumen. Previous measurements of these basolateral K+ channels in planar lipid bilayers and in plasma membrane vesicles have shown a very high sensitivity to Ca2+ with a K 0.5 ranging from 20 nm to 300 nm, whereas other studies have a much lower sensitivity to Ca2+. To investigate whether this difference could be due to modulation by second messenger systems, the effect of phosphorylation and dephosphorylation was examined. After addition of phosphatase, the K+ channels lost their high sensitivity to Ca2+, yet they could still be activated by high concentrations of Ca2+ (10 μm). Furthermore, the high sensitivity to Ca2+ could be restored after phosphorylation catalyzed by a cAMP dependent protein kinase. There was no effect of addition of protein kinase C. In agreement with the involvement of enzymatic processes, lag periods of 30–120 sec for dephosphorylation and of 10–280 sec for phosphorylation were observed. The phosphorylation state of the channel did not influence the single channel conductance. The results demonstrate that the high sensitivity to Ca2+ of the maxi K+ channel from rabbit distal colon is a property of the phosphorylated form of the channel protein, and that the difference in Ca2+ sensitivity between the dephosphorylated and phosphorylated forms of the channel protein is more than one order of magnitude. The variety in Ca2+ sensitivities for maxi K+ channels from tissue to tissue and from different studies on the same tissue could be due to modification by second messenger systems. Received: 28 February 1995/Revised: 22 December 1995  相似文献   
79.
Whole-cell patch clamp experiments were performed on cultured human cytotrophoblast cells incubated for 24–48 hr after their isolation from term placentas. Cl-selective currents were examined using K+-free solutions. Under nonstimulated conditions, most cells initially expressed only small background leak currents. However, inclusion of 0.2 mm GTPγS in the electrode solution caused activation of an outwardly rectifying conductance which showed marked time-dependent activation at depolarized potentials above +20 mV. Stimulation of this conductance by GTPγS was found to be Ca2+-dependent since GTPγS failed to activate currents when included in a Ca2+-free electrode solution. In addition, similar currents could be activated by increasing the [Ca2+] of the pipette solution to 500 nm. The Ca2+-activated conductance was judged to be Cl-selective, since reversal potentials were predicted by Nernst equilibrium potentials for Cl. This conductance could also be reversibly inhibited by addition of the anion channel blocker DIDS to the bath solution at a dose of 100 μm. Preliminary experiments indicated the presence of a second whole-cell anion conductance in human cytotrophoblast cells, which may be activated by cell swelling. Possible roles for the Ca2+-activated Cl conductance in human placental trophoblast are discussed. Received: 9 November 1995/Revised: 18 January 1996  相似文献   
80.
We studied the characteristics of the basal and antidiuretic hormone (arginine vasotocin, AVT)-activated whole cell currents of an aldosterone-treated distal nephron cell line (A6) at two different cytosolic Ca2+ concentrations ([Ca2+] c , 2 and 30 nm). A6 cells were cultured on a permeable support filter for 10 ∼ 14 days in media with supplemental aldosterone (1 μm). At 30 nm [Ca2+] c , basal conductances mainly consisted of Cl conductances, which were sensitive to 5-nitro-2-(3-phenylpropylamino)-benzoate. Reduction of [Ca2+] c to 2 nm abolished the basal Cl conductance. AVT evoked Cl conductances at 2 as well as 30 nm [Ca2+] c . In addition to Cl conductances, AVT induced benzamil-insensitive nonselective cation (NSC) conductances. This action on NSC conductances was observed at 30 nm [Ca2+] c but not at 2 nm [Ca2+] c . Thus, cytosolic Ca2+ regulates NSC and Cl conductances in a distal nephron cell line (A6) in response to AVT. Keeping [Ca2+] c at an adequate level seems likely to be an important requirement for AVT regulation of ion conductances in aldosterone-treated A6 cells. Received: 6 May 1996/Revised: 28 June 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号