全文获取类型
收费全文 | 5355篇 |
免费 | 243篇 |
国内免费 | 130篇 |
专业分类
5728篇 |
出版年
2024年 | 3篇 |
2023年 | 60篇 |
2022年 | 95篇 |
2021年 | 102篇 |
2020年 | 103篇 |
2019年 | 115篇 |
2018年 | 127篇 |
2017年 | 118篇 |
2016年 | 107篇 |
2015年 | 168篇 |
2014年 | 254篇 |
2013年 | 346篇 |
2012年 | 137篇 |
2011年 | 208篇 |
2010年 | 175篇 |
2009年 | 218篇 |
2008年 | 278篇 |
2007年 | 293篇 |
2006年 | 272篇 |
2005年 | 239篇 |
2004年 | 243篇 |
2003年 | 214篇 |
2002年 | 191篇 |
2001年 | 126篇 |
2000年 | 139篇 |
1999年 | 139篇 |
1998年 | 131篇 |
1997年 | 159篇 |
1996年 | 109篇 |
1995年 | 102篇 |
1994年 | 87篇 |
1993年 | 99篇 |
1992年 | 91篇 |
1991年 | 70篇 |
1990年 | 72篇 |
1989年 | 67篇 |
1988年 | 60篇 |
1987年 | 41篇 |
1986年 | 26篇 |
1985年 | 39篇 |
1984年 | 33篇 |
1983年 | 18篇 |
1982年 | 21篇 |
1981年 | 12篇 |
1980年 | 7篇 |
1979年 | 7篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有5728条查询结果,搜索用时 15 毫秒
111.
短杆菌肽A-DMPC通道内离子输运的分子动力学模拟 总被引:2,自引:0,他引:2
用最近提出的构建膜体系初始构象的有效方法 ,构建了在DMPC脂膜环境下短杆菌肽A通道模型 (GA -DMPC)。通过对Na 、Ca2 、Cl-三种不同离子在GA -DMPC通道内不同位置的分子动力学模拟 ,研究离子在通道内输运过程中与通道及通道内水分子的相互作用 ,从分子动力学的角度阐明离子在通道内的输运机制。主要计算结果表明 :(1)离子在通道内的输运使GA的构象发生变化 ,GA的柔性是离子在通道内通透的重要因素 ;(2)Cl- 离子可扩大通道半径 ,Na 离子和Ca2 离子则减小通道半径。Cl-离子不能在GA通道内通透 ;(3)离子的出现使通道内水分子的偶极方向发生变化。上述结果均与实验相符。 相似文献
112.
KCNQ2 and KCNQ3 subunits belong to the six transmembrane domain K+ channel family and loss of function mutations are associated with benign familial neonatal convulsions. KCNE2 (MirP1) is a single transmembrane domain subunit first described to be a modulator of the HERG potassium channel in the heart. Here, we show that KCNE2 is present in brain, in areas which also express KCNQ2 and KCNQ3 channels. We demonstrate that KCNE2 associates with KCNQ2 and/or KCNQ3 subunits. In transiently transfected COS cells, KCNE2 expression produces an acceleration of deactivation kinetics of KCNQ2 and of the KCNQ2–KCNQ3 complex. Effects of two previously identified arrhythmogenic mutations of KCNE2 have also been analyzed. 相似文献
113.
【目的】SC1通道(sodium channel 1)是昆虫体内一种重要的离子通道,被认为是一种开发新型杀虫剂的神经靶标。本研究拟克隆禾谷缢管蚜Rhopalosiphum padi的SC1通道基因,并初步分析其生理功能及其与SC1类通道、电压门控钠离子通道、电压门控钙离子通道的进化关系。【方法】采用RT-PCR技术,克隆了禾谷缢管蚜SC1基因完整的开放阅读框;利用实时荧光定量PCR技术,分析禾谷缢管蚜成蚜在不同浓度的高效氯氟氰菊酯诱导下SC1基因表达变化。【结果】获得了禾谷缢管蚜SC1基因(命名为RSC1)完整的开放阅读框(Gen Bank登录号为KU640190),其长度6 687bp,编码2 228个氨基酸。RSC1具有SC1通道的结构特征,有一个不同于电压门控钠离子通道和电压门控钙离子通道的特殊DEEA模体(motif)。系统进化分析结果显示,RSC1与电压门控钠离子通道组成一个进化枝,电压门控钙离子通道组成另外一个进化枝,SC1与电压门控钠离子通道在进化上有更近的起源关系。实时荧光定量PCR分析结果表明,LC15,LC35和LC503种剂量的高效氯氟氰菊酯处理6 h后,禾谷缢管蚜RSC1基因表达量相对于清水对照显著下调,表达量分别为对照的0.57,0.82和0.78倍;3种剂量的高效氯氟氰菊酯处理24 h后,禾谷缢管蚜RSC1基因表达量分别为对照的2.19,1.33和1.19倍,其中LC15(0.1484 mg/L)胁迫下RSC1基因的表达量显著上调。【结论】SC1类通道与电压门控钠离子通道在进化起源上有更近的关系。RSC1通道可能是高效氯氟氰菊酯的次级靶标。由于RSC1和其同源基因只存在于节肢动物中,脊椎动物尚未发现该类基因,因此这类通道可能作为开发新型杀虫剂的神经靶标。 相似文献
114.
Ziad Fajloun Nicolas Andreotti Mohamed Fathallah Jean‐Marc Sabatier Michel De Waard 《Journal of peptide science》2011,17(3):200-210
Maurotoxin (MTX) is a 34‐residue toxin that was isolated initially from the venom of the scorpion Scorpio maurus palmatus. Unlike the other toxins of the α‐KTx6 family (Pi1, Pi4, Pi7, and HsTx1), MTX exhibits a unique disulfide bridge organization of the type C1? C5, C2? C6, C3? C4, and C7? C8 (instead of the conventional C1? C5, C2? C6, C3? C7, and C4? C8, herein referred to as Pi1‐like) that does not prevent its folding along the classic α/β scaffold of scorpion toxins. MTXPi1 is an MTX variant with a conventional pattern of disulfide bridging without any primary structure alteration of the toxin. Here, using MTX and/or MTXPi1 as models, we investigated how the type of folding influences toxin recognition of the Shaker B potassium channel. Amino acid residues of MTX that were studied for Shaker B recognition were selected on the basis of their homologous position in charybdotoxin, a three disulfide‐bridged scorpion toxin also active on this channel type. These residues favored either an MTX‐ or MTXPi1‐like folding. Our data indicate clearly that Lys23 and Tyr32 (two out of ten amino acid residues studied) are the most important residues for Shaker B channel blockage by MTX. For activity on SKCa channels, the same amino acid residues also affect, directly or indirectly, the recognition of SK channels. The molecular modeling technique and computed docking indicate the existence of a correlation between the half cystine pairings of the mutated analogs and their activity on the Shaker B K+ channel. Overall, mutations in MTX could, or could not, change the reorganization of disulfide bridges of this molecule without affecting its α/β scaffold. However, changing of the peptide backbone (cross linking disulfide bridges from MTX‐like type vs MTXPi1‐like type) appears to have less impact on the molecule activity than mutation of certain key amino acids such as Lys23 and Tyr32 in this toxin. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
115.
FK-506结合蛋白对钙释放通道的调控 总被引:1,自引:0,他引:1
细胞内自由钙作为一种重要的细胞信使广泛地参与细胞生理功能调控.胞内钙库(内质网系和肌浆网系)对调节细胞内自由钙水平起着重要的作用.钙库膜上的钙释放通道(ryanodine受体和三磷酸肌醇受体)受许多因素调控,其中之一就是新近研究得相当多的FK506结合蛋白.免疫抑制剂FK506能特异地结合钙库上一种分子质量为12 ku左右的蛋白,这种FK506结合蛋白与钙释放通道形成一种紧密连接的复合体,在正常生理情况下对钙释放通道起着十分重要的调控作用. 相似文献
116.
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate. 相似文献
117.
Mendoza IE Schmachtenberg O Tonk E Fuentealba J Díaz-Raya P Lagos VL García AG Cárdenas AM 《Journal of neurochemistry》2003,86(6):1477-1486
The contribution of Ca2+ entry through different voltage-activated Ca2+ channel (VACC) subtypes to the phosphorylation of extracellular signal regulated kinase (ERK) was examined in bovine adrenal-medullary chromaffin cells. High K+ depolarization (40 mM, 3 min) induced ERK phosphorylation, an effect that was inhibited by specific mitogen-activated protein kinase kinase inhibitors. By using selective inhibitors, we observed that depolarization-induced ERK phosphorylation completely depended on protein kinase C-alpha (PKC-alpha), but not on Ca2+/calmodulin-dependent protein kinase nor cyclic AMP-dependent protein kinase. Blockade of L-type Ca2+ channels by 3 microm furnidipine, or blockade of N channels by 1 micromomega-conotoxin GVIA reduced ERK phosphorylation by 70%, while the inhibition of P/Q channels by 1 micromomega-agatoxin IVA only caused a 40% reduction. The simultaneous blockade of L and N, or P/Q and N channels completely abolished this response, yet 23% ERK phosphorylation remained when L and P/Q channels were simultaneously blocked. Confocal imaging of cytosolic Ca2+ elevations elicited by 40 mm K+, showed that Ca2+ levels increased throughout the entire cytosol, both in the presence and the absence of Ca2+ channel blockers. Fifty-eight percent of the fluorescence rise depended on Ca2+ entering through N channels. Thus, ERK phosphorylation seems to depend on a critical level of Ca2+ in the cytosol rather than on activation of a given Ca2+ channel subtype. 相似文献
118.
119.
J.I. Kourie 《The Journal of membrane biology》1998,164(1):47-58
The lipid bilayer technique was used to examine the effects of the ATP-sensitive K+ channel inhibitor (glibenclamide) and openers (diazoxide, minoxidil and cromakalim) and Cl− channel activators (GABA and diazepam) on two types of chloride channels in the sarcoplasmic reticulum (SR) from rabbit skeletal
muscle. Neither diazepam at 100 μm nor GABA at 150 μm had any significant effect on the conductance and kinetics of the 75 pS small chloride (SCl) channel.
Unlike the 150 pS channel, the SCl channel is sensitive to cytoplasmic glibenclamide with K
i
∼ 30 μm. Glibenclamide induced reversible decline in the values of current (maximal current amplitude, I
max and average mean current, I′) and kinetic parameters (frequency of opening F
o
, probability of the channel being open P
o
and mean open time, T
o
, of the SCl channel. Glibenclamide increased mean closed time, T
c
, and was a more potent blocker from the cytoplasmic side (cis) than from the luminal side (trans) of the channel.
Diazoxide increased I′, P
o
, and T
o
in the absence of ATP and Mg2+ but it had no effect on I
max and also failed to activate or remove the glibenclamide- and ATP-induced inhibition of the SCl channel. Minoxidil induced
a transient increase in I′ followed by an inhibition of I
max, whereas cromakalim reduced P
o
and I′ by increasing channel transitions to the closed state and reducing T
o
without affecting I
max. The presence of diazoxide, minoxidil or cromakalim on the cytoplasmic side of the channel did not prevent [ATP]
cis
or [glibenclamide]
cis
from blocking the channel.
The data suggest that the action(s) of these drugs are not due to their effects on the phosphorylation of the channel protein.
The glibenclamide- and cromakalim-induced effects on the SCl channel are mediated via a ``flicker' type block mechanism.
Modulation of the SCl channel by [diazoxide]
cis
and [glibenclamide]
cis
highlights the therapeutic potential of these drugs in regulating the Ca2+-counter current through this channel.
Received: 2 September 1997/Revised: 20 March 1998 相似文献
120.
The X-ray crystallographic structure of KvAP, a voltage-gated bacterial K channel, was recently published. However, the position and the molecular movement of the voltage sensor, S4, are still controversial. For example, in the crystallographic structure, S4 is located far away (>30 A) from the pore domain, whereas electrostatic experiments have suggested that S4 is located close (<8 A) to the pore domain in open channels. To test the proposed location and motion of S4 relative to the pore domain, we induced disulphide bonds between pairs of introduced cysteines: one in S4 and one in the pore domain. Several residues in S4 formed a state-dependent disulphide bond with a residue in the pore domain. Our data suggest that S4 is located close to the pore domain in a neighboring subunit. Our data also place constraints on possible models for S4 movement and are not compatible with a recently proposed KvAP model. 相似文献