首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   112篇
  国内免费   67篇
  930篇
  2024年   9篇
  2023年   78篇
  2022年   129篇
  2021年   146篇
  2020年   112篇
  2019年   134篇
  2018年   74篇
  2017年   69篇
  2016年   33篇
  2015年   39篇
  2014年   50篇
  2013年   32篇
  2012年   12篇
  2011年   8篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有930条查询结果,搜索用时 15 毫秒
91.
Identification of environment specific marker-features is one of the key objectives of many metagenomic studies. It aims to identify such features in microbiome datasets that may serve as markers of the contrasting or comparable states. Hypothesis testing and black-box machine learnt models which are conventionally used for identification of these features are generally not exhaustive, especially because they generally do-not provide any quantifiable relevance (context) of/between the identified features. We present MarkerML web-server, that seeks to leverage the emergence of interpretable machine learning for facilitating the contextual discovery of metagenomic features of interest. It does so through a comprehensive and automated application of the concept of Shapley Additive Explanations in companionship to the compositionality accounted hypothesis testing for the multi-variate microbiome datasets. MarkerML not only helps in identification of marker-features, but also enables insights into the role and inter-dependence of the identified features in driving the decision making of the supervised machine learnt model. Generation of high quality and intuitive visualizations spanning prediction effect plots, model performance reports, feature dependency plots, Shapley and abundance informed cladograms (Sungrams), hypothesis tested violin plots along-with necessary provisions for excluding the participant bias and ensuring reproducibility of results, further seek to make the platform a useful asset for the scientists in the field of microbiome (and even beyond). The MarkerML web-server is freely available for the academic community at https://microbiome.igib.res.in/markerml/.  相似文献   
92.
93.
94.
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology.  相似文献   
95.
High‐throughput sequencing is revealing that most macro‐organisms house diverse microbial communities. Of particular interest are disease vectors whose microbiome could potentially affect pathogen transmission and vector competence. We investigated bacterial community composition and diversity of the ticks Dermacentor variabilis (n = 68) and Ixodes scapularis (n = 15) and blood of their shared rodent host, Peromyscus leucopus (n = 45) to quantify bacterial diversity and concordance. The 16S rRNA gene was amplified from genomic DNA from field‐collected tick and rodent blood samples, and 454 pyrosequencing was used to elucidate their bacterial communities. After quality control, over 300 000 sequences were obtained and classified into 118 operational taxonomic units (OTUs, clustered at 97% similarity). Analysis of rarefied communities revealed that the most abundant OTUs were tick species‐specific endosymbionts, Francisella and Rickettsia, and the commonly flea‐associated bacterium Bartonella in rodent blood. An Arsenophonus and additional Francisella endosymbiont were also present in D. variabilis samples. Rickettsia was found in both tick species but not in rodent blood, suggesting that it is not transmitted during feeding. Bartonella was present in larvae and nymphs of both tick species, even those scored as unengorged. Relatively, few OTUs (e.g. Bartonella, Lactobacillus) were found in all sample types. Overall, bacterial communities from each sample type were significantly different and highly structured, independent of their dominant OTUs. Our results point to complex microbial assemblages inhabiting ticks and host blood including infectious agents, tick‐specific endosymbionts and environmental bacteria that could potentially affect arthropod‐vectored disease dynamics.  相似文献   
96.
Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.  相似文献   
97.
98.
膝骨关节炎是一种中老年人常见的慢性疾病,因其发病率及致残率高,严重影响患者的生存质量。膝骨关节炎不仅增加了患者及其家庭乃至社会的经济压力,而且还加重了心理负担。治疗方案虽然多,但目前尚无根治方法,而且疗效也参差不齐。肠道菌群作为人体巨大的微生物宝库,拥有着很大的潜力,这使之成为了科研领域一个新的研究热点,其对膝骨关节炎的影响也成为了人们关注的焦点。本文通过查阅相关文献,从慢性炎症、代谢性疾病、成骨细胞以及破骨细胞这四个方面来阐述和总结肠道菌群与膝骨关节炎的关系,以期为临床上治疗膝骨关节炎提供新的方法与思路。  相似文献   
99.
100.
【目的】分析倭蜂猴粪便微生物中苯酚羟化酶(Phenol hydroxylase,PH)和邻苯二酚1,2-双加氧酶(Catechol 1,2-dioxygenase,C12O)的基因多样性。【方法】利用简并引物,以倭蜂猴粪便微生物宏基因组DNA为模板,通过PCR扩增,分别构建PH和C12O基因克隆文库,并对克隆进行测序分析。【结果】倭蜂猴粪便微生物来源的PH和C12O基因序列经BLAST比对分析,与GenBank中相应酶的序列一致性分别介于92%?100%和87%?100%。系统进化树分析表明PH基因序列与Neisseria、Burkholderia、Alcaligenes、Acinetobacter 4个属来源的PH序列相关;C12O基因序列全部与Acinetobacter来源的C12O序列相关。序列比对结果表明PH序列具有LmPH (Largest subunit of multicomponent PH)中高保守的两个DEXRH结构域;C12O序列具有能被Ag+和Hg2+抑制的位点(半胱氨酸)。【结论】倭蜂猴粪便微生物来源的PH为多组分PH,其降解苯酚的中间产物邻苯二酚可以被C12O通过邻位开环途径裂解。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号