首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   30篇
  国内免费   31篇
  2023年   7篇
  2022年   8篇
  2021年   18篇
  2020年   17篇
  2019年   15篇
  2018年   17篇
  2017年   8篇
  2016年   15篇
  2015年   23篇
  2014年   38篇
  2013年   60篇
  2012年   33篇
  2011年   13篇
  2010年   14篇
  2009年   22篇
  2008年   8篇
  2007年   14篇
  2006年   22篇
  2005年   13篇
  2004年   23篇
  2003年   9篇
  2002年   28篇
  2001年   17篇
  2000年   18篇
  1999年   21篇
  1998年   17篇
  1997年   10篇
  1996年   11篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1982年   1篇
排序方式: 共有556条查询结果,搜索用时 15 毫秒
551.
552.
Centrosomes—as well as the related spindle pole bodies (SPBs) of yeast—have been extensively studied from the perspective of their microtubule-organizing roles. Moreover, the biogenesis and duplication of these organelles have been the subject of much attention, and the importance of centrosomes and the centriole–ciliary apparatus for human disease is well recognized. Much less developed is our understanding of another facet of centrosomes and SPBs, namely their possible role as signalling centres. Yet, many signalling components, including kinases and phosphatases, have been associated with centrosomes and spindle poles, giving rise to the hypothesis that these organelles might serve as hubs for the integration and coordination of signalling pathways. In this review, we discuss a number of selected studies that bear on this notion. We cover different processes (cell cycle control, development, DNA damage response) and organisms (yeast, invertebrates and vertebrates), but have made no attempt to be comprehensive. This field is still young and although the concept of centrosomes and SPBs as signalling centres is attractive, it remains primarily a concept—in need of further scrutiny. We hope that this review will stimulate thought and experimentation.  相似文献   
553.
Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule‐organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human‐induced pluripotent stem cell (iPSC)‐derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule‐associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live‐cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus‐end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC‐derived neurons, thereby laying the foundation for further axon development and function.  相似文献   
554.
555.
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.  相似文献   
556.
A cytogenetic analysis was performed on peripheral blood lymphocytes from 183 Chernobyl clean-up workers and 27 control individuals. Increased frequencies of chromosome aberrations were associated with exposure to radiation at Chernobyl, alcohol abuse and a history of recent influenza infection. However, only approximately 20% of Chernobyl clean-up workers had an increased frequency of dicentric and ring chromosomes. At the same time, an increased frequency of acentric fragments in lymphocytes of clean-up workers was characteristic. The use of multivitamins as dietary supplement significantly decreased the frequency of chromosome aberrations, especially of chromatid breaks. Rogue cells were found in lymphocytes of 28 clean-up workers and 3 control individuals. The appearance of rogue cells was associated with a recent history of acute respiratory disease (presumably caused by adenoviral infection) and, probably, alcohol abuse. Dicentric chromosomes in rogue cells were distributed according to a negative binomial distribution. Occurrence of rogue cells due to a perturbation of cell cycle control and abnormal apoptosis is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号