首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  33篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2007年   3篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
11.
12.
Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo‐focused ion beam milling‐enabled cryo‐electron tomography to image sperm flagella from three mammalian species. We resolve in‐cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament‐bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament‐bracing structures reinforcing microtubules at the nano‐scale to accessory structures that impose micron‐scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.  相似文献   
13.
The actin motor protein myosin VI is a multivalent protein with diverse functions. Here, we identified and characterised a myosin VI ubiquitous interactor, the oral‐facial‐digital syndrome 1 (OFD1) protein, whose mutations cause malformations of the face, oral cavity, digits and polycystic kidney disease. We found that myosin VI regulates the localisation of OFD1 at the centrioles and, as a consequence, the recruitment of the distal appendage protein Cep164. Myosin VI depletion in non‐tumoural cell lines causes an aberrant localisation of OFD1 along the centriolar walls, which is due to a reduction in the OFD1 mobile fraction. Finally, loss of myosin VI triggers a severe defect in ciliogenesis that could be, at least partially, ascribed to an impairment in the autophagic removal of OFD1 from satellites. Altogether, our results highlight an unprecedent layer of regulation of OFD1 and a pivotal role of myosin VI in coordinating the formation of the distal appendages and primary cilium with important implications for the genetic disorders known as ciliopathies.  相似文献   
14.
15.
The function of centrioles has been controversial and remains incompletely resolved. This is because centrioles, in and of themselves, do not directly perform any physiological activity. Instead, their role is only to act as a jig or breadboard onto which other functional structures can be built. Centrioles are primarily involved in forming two structures-centrosomes and cilia. Centrioles bias the position of spindle pole formation, but because spindle poles can self-organize, the function of the centriole in mitosis is not obligatory. Consequently, lack of centrioles does not generally prevent mitosis, although recent experiments suggest acentriolar spindles have reduced fidelity of chromosome segregation. In contrast, centrioles are absolutely required for the assembly of cilia, including primary cilia that act as cellular antennae. Consistent with this requirement, it is now becoming clear that many ciliary diseases, including nephronophthisis, Bardet-Biedl syndrome, Meckel Syndrome, and Oral-Facial-Digital syndrome, are caused by defects in centriole-associated proteins.  相似文献   
16.
Testicular spermatozoa and sperm development in the archaeogastropod Calliotropis glyptus Watson (Trochoidae: Trochidae) are examined using transmission electron microscopy and formalin-fixed tissues. During spermiogenesis, the acrosome, formed evidently through fusion of Golgi-derived proacrosomal vesicles, becomes deeply embedded in the condensing spermatid nucleus. Two centrioles (proximal and distal), both showing triplet microtubular substructure, are present in spermatids—the distal centriole giving rise to the sperm tail and its associated rootlet. During formation of the basal invagination in the spermatid nucleus, centrioles, and rootlet move towards the nucleus and come to lie totally within the basal invagination. Mitochondria are initially positioned near the base of the nucleus but subsequently become laterally displaced. Morphology of the mature spermatozoon is modified from that of the classic primitive or ect-aquasperm type by having 1) the acrosome embedded in the nucleus (the only known example within the Mollusca), 2) a deep basai invagination in the nucleus containing proximal and distal centrioles and an enveloping matrix (derived from the rootlet), 3) laterally displaced periaxonemal mitochondria, and 4) a tail extending from the basal invagination of the nucleus. Implantation of the acrosomal complex and centrioles within imaginations of the nucleus and lateral displacement of mitochondria effectively minimize the length of the sperm head and midpiece. Such modifications may be associated with motility demands, but this remains to be established. The unusual features of C. glyptus spermatozoa, though easily derivable from ‘typical’ trochoid sperm architecture, may prove useful in delineating the genus Calliotropis or tracing its relationship to other genera within the trochid subfamily Margaritinae.  相似文献   
17.
Normal fertilization and parthenogenesis of unfertilized eggs were observed in Laminaria angustata Kjellman by indirect immunofluorescence microscopy using a tubulin antibody. Sperm aster formation did not occur at plasmogamy. The centrosome of the egg gradually disappeared. Shortly after karyogamy, one centrosome reappeared near the zygote nucleus. During mitosis, the centrosome replicated and the daughter centrosomes migrated to opposite poles. The mitotic spindle was formed by microtubules that elongated from both poles. After the first cell division, each of the daughter cells received one centrosome that persisted throughout the development of the sporophyte. During parthenogenetic development, abnormal mono-, tri-, and multi-polar spindles were formed. These abnormal spindles caused abnormal nuclear and cytoplasmic division. Thus, cells were produced with 1) no nuclei, 2) multiple nuclei, 3) irregular numbers of chromosomes, and/or 4) no centrosomes. This is one of the reasons for the abortion and abnormal morphogenesis during parthenogenesis. Ultrastructural observations showed that, although cells of some parthogenetic sporophytes have centrioles, cells of almost all abnormally shaped parthenogenetic sporophytes lack centrioles. These results suggest that centrioles are required for normal centrosomal functions in Laminaria. Although centrioles are inherited paternally, some centrosomal material appears to be present or produced de novo in unfertilized eggs.  相似文献   
18.
Mitosis in Boergesenia forbesii (Harvey) Feldman was studied by immunofluorescence microscopy using anti-β–tubulin, anti-γ–tubulin, and anti-centrin antibodies. In the interphase nucleus, one, two, or rarely three anti-centrin staining spots were located around the nucleus, indicating the existence of centrioles. Microtubules (MTs) elongated randomly from the circumference of the nuclear envelope, but distinct microtubule organizing centers could not be observed. In prophase, MTs located around the interphase nuclei became fragmented and eventually disappeared. Instead, numerous MTs elongated along the nuclear envelope from the discrete anti-centrin staining spots. Anti-centrin staining spots duplicated and migrated to the two mitotic poles. γ–Tubulin was not detected at the centrioles during interphase but began to localize there from prophase onward. The mitotic spindle in B. forbesii was a typical closed type, the nuclear envelope remaining intact during nuclear division. From late prophase, accompanying the chromosome condensation, spindle MTs could be observed within the nuclear envelope. A bipolar mitotic spindle was formed at metaphase, when the most intense staining of γ-tubulin around the centrioles could also be seen. Both spindle MT poles were formed inside the nuclear envelope, independent of the position of the centrioles outside. In early anaphase, MTs between separating daughter chromosomes were not detected. Afterward, characteristic interzonal spindle MTs developed and separated both sets of the daughter chromosomes. From late anaphase to telophase, γ-tubulin could not be detected around the centrioles and MT radiation from the centrioles became diminished at both poles. γ-Tubulin was not detected at the ends of the interzonal spindle fibers. When MTs were depolymerized with amiprophos methyl during mitosis, γ-tubulin localization around the centrioles was clearly confirmed. Moreover, an influx of tubulin molecules into the nucleus for the mitotic spindle occurred at chromosome condensation in mitosis.  相似文献   
19.
  相似文献   
20.
Although it has been known for over a century that sea urchin eggs are polarized cells, very little is known about the mechanism responsible for establishing and maintaining polarity. Our previous studies of microtubule organization during sea urchin oogenesis described a cortical microtubule-organizing center (MTOC) present during germinal vesicle (GV) migration in large oocytes. This MTOC was localized within the future animal pole of the mature egg. In this study we have used electron microscopy and immunocytochemistry to characterize the structure of this MTOC and have established that this organelle appears prior to GV migration. We show that the cortical MTOC contains all the components of a centrosome, including a pair of centrioles. Although a centrosome proper was not found in small oocytes, the centriole pair in these cells was always found in association with a striated rootlet, a structural remnant of the flagellar apparatus present in precursor germinal cells (PGCs). The centrioles/striated rootlet complex was asymmetrically localized to the side of the oocyte closest to the gonadal wall. These data are consistent with the previously proposed hypothesis that in echinoderms the polarity of the PGCs in the germinal epithelium influences the final polarity of the mature egg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号