首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7638篇
  免费   761篇
  国内免费   904篇
  2024年   20篇
  2023年   141篇
  2022年   180篇
  2021年   218篇
  2020年   283篇
  2019年   313篇
  2018年   274篇
  2017年   288篇
  2016年   291篇
  2015年   274篇
  2014年   344篇
  2013年   512篇
  2012年   340篇
  2011年   314篇
  2010年   294篇
  2009年   317篇
  2008年   365篇
  2007年   391篇
  2006年   358篇
  2005年   315篇
  2004年   301篇
  2003年   331篇
  2002年   257篇
  2001年   259篇
  2000年   202篇
  1999年   220篇
  1998年   177篇
  1997年   193篇
  1996年   153篇
  1995年   116篇
  1994年   111篇
  1993年   115篇
  1992年   125篇
  1991年   100篇
  1990年   93篇
  1989年   88篇
  1988年   97篇
  1987年   59篇
  1986年   59篇
  1985年   80篇
  1984年   79篇
  1983年   48篇
  1982年   42篇
  1981年   38篇
  1980年   37篇
  1979年   15篇
  1978年   13篇
  1977年   19篇
  1976年   10篇
  1973年   9篇
排序方式: 共有9303条查询结果,搜索用时 78 毫秒
981.
采用RT-PCR方法合成了本研究室保存的番木瓜畸叶病毒(PMaLV)的外壳蛋白(CP)基因,将其CP基因克隆进Promega公司的pGEM-T and pGEM-T Easy Vector System(简称T-载体),并进行了序列分析。结果表明,PMaLV CP基因核苷酸序列全长为861nt,推导其编码287个氨基酸。与番木瓜环斑病毒(PRSV)美国夏威HA株系和澳大利亚W株系的CP基因相比,在第66nt处开始连续缺失3个核苷酸。与PRSV的华南Ys、Sm和G株系以及夏威夷的HA和澳大利亚的W株系相比,其CP基因序列同源率分别为96%、98%、95%、89%和89%。其的氨基酸序列同源率分别为98%、97%、97%、96%和95%。此结果表明,PMaLV属于PRSV的一个株系,不是一种新病毒。因此,我们称其为番木瓜环斑病毒畸叶株系(ML株系)。  相似文献   
982.
云南中部地区植被覆盖时空变化特征及其影响因素研究   总被引:2,自引:0,他引:2  
基于MODIS NDVI数据通过像元二分模型提取植被覆盖, 利用线性趋势、相关分析方法分析了云南中部地区2000—2016年植被覆盖的时空分布特征与变化趋势, 并探讨了气候因子、地形因子、人类活动对其植被覆盖的影响。研究结果为: 云南中部地区植被覆盖春季最低(平均58.75%), 秋季最高(平均66.30%), 大部分地区年植被覆盖度的平均值在50%—70%之间; 植被覆盖高值区主要分布在曲靖境内(>80%); 滇池周边人口高密度区植被覆盖常年最低(<20%)。近17年来云南中部地区植被覆盖总体呈现增长趋势, 年平均增长率0.3%•a-1, 其中秋季增幅最大(0.42%•a-1)。坡度对植被覆盖影响较大, 坡度≤8°地区的植被覆盖明显较低。除了冬季降水量与植被覆盖呈现显著正相关关系, 其他季节多呈现负相关关系; 气温与植被覆盖多呈现正相关关系, 云南中部地区植被覆盖变化主要受气温影响。人类活动对植被覆盖变化影响较大, 造林面积变化与植被覆盖趋势变化具有相对一致性, 经济发展水平较高的昆明市区植被覆盖为常年最低。  相似文献   
983.
The larvicidal effects of polyphenols of natural crude decomposed alder leaf litter and commercially available tannic acid were experimentally compared with those of two common conventional insecticides (Bacillus thuringiensis ssp. israelensis: microbial insecticide; temephos: organophosphate insecticide). Comparative standard bioassays using third instar larval Aedes aegypti, A. albopictus, Culex pipiens and Coquillettidia richiardii as references indicated that Aedes and Culex taxa are far more sensitive to alder leaf litter than to tannic acid and conventional insecticides. C. richiardii is far more resistant to conventional insecticides than Aedes and Culex taxa, but its sensitivity to tannic acid is close to that of those taxa. Dietary vegetable polyphenols are thus proposed as new, practical, alternative chemicals for mosquito control when conventional insecticides are difficult and costly to be used (e.g., in the management of Aedes and Culex populations in man-made breeding sites and Coquillettidia control strategy).  相似文献   
984.
Comparative morphology of leaf epidermis in the Chloranthaceae   总被引:5,自引:0,他引:5  
Leaf epidermis of 23 samples representing 16 species of all the four extant genera of the Chloranthaceae, i.e. Sarcandra, Chloranthus, Ascarina and Hedyosmum , were investigated under both light microscope and scanning electron microscope. Characters of leaf epidermis in this family, such as pattern of epidermal cells, type of stomata, shape of guard cell pairs and cuticular ornamentation, are usually constant in species and thus of great significance in understanding the relationships between and within genera. The previous viewpoints with either Hedyosmum or Chloranthus shown as having the closest affinity with Ascarina seem to be unreasonable. The phylogeny indicated by DNA sequence analysis, which suggested that Ascarina be the sister group of Sarcandra and Chloranthus , and Hedyosmum the sister of the above three genera, is well supported. Within Chloranthus , the traditional division of the genus on the basis of habit seems to be quite unnatural. Evidence from leaf epidermis, just as that from stem anatomy and cytology as well as sequence analysis of ITS region, strongly suggests the separation of the genus into two groups according to the characteristics of androecial organs.  相似文献   
985.
The present contribution discusses the soil P status of central Amazonian upland soils, the effects of tree crops on soil P availability and the factors controlling soil P cycling in land use systems with tree crops. Soil fertility management has to target the prevalent P deficiency by adequate P fertilization, especially in southern and northern municipalities of central Amazônia where the largest areas with severe P deficiency are found. P fixation to clay minerals is not a major obstacle for P management in the highly weathered upland soils of the central Amazon due to their low Al- and Fe-oxide contents. Low total soil P amounts are mainly responsible for low P availability. Tree crops are found to be especially suitable for land use under low-P-input conditions. Their large P return to soil by litterfall and pruning improves soil P availability. Additionally, litter quality affects P release and soil P availability. Both aspects, quantity and quality effects, are strongly dependent on tree species. Phosphorus sorption does not seem to be reduced by different litter types confirming earlier results that P fixation is not a major problem in central Amazonian upland soils. In conclusion, biological approaches are more important than physical approaches to improve soil P availability in central Amazonian Oxisols. With large P cycling through soil microbial biomass and between plant and soil, a higher availability of added P can be maintained and P applications only need to replenish P exports by harvest. Low P additions will improve productivity also for long-term uptake by trees. This is of high importance in regions with poor infrastructure and the lack of financial resources.  相似文献   
986.
Retention of green leaf area in grain sorghum under post‐anthesis drought, known as stay‐green, is associated with greater biomass production, lodging resistance and yield. The stay‐green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay‐green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay‐green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay‐green were grown under a post‐anthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age‐related senescence and N uptake during grain filling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay‐green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay‐green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow more carbon and nitrogen to be allocated to the roots of stay‐green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.  相似文献   
987.
The spatial variations in the stable carbon isotope composition (δ13C) of air and leaves (total matter and soluble sugars) were quantified within the crown of a well‐watered, 20‐year‐old walnut tree growing in a low‐density orchard. The observed leaf carbon isotope discrimination (Δ) was compared with that computed by a three‐dimensional model simulating the intracanopy distribution of irradiance, transpiration and photosynthesis (previously parameterized and tested for the same tree canopy) coupled to a biophysically based model of carbon isotope discrimination. The importance of discrimination associated with CO2 gradients encountered from the substomatal sites to the carboxylation sites was evaluated. We also assessed by simulation the effect of current irradiance on leaf gas exchange and the effect of long‐term acclimation of photosynthetic capacity and stomatal and internal conductances to light regime on intracanopy gradients in Δ. The main conclusions of this study are: (i) leaf Δ can exhibit important variations (5 and 8‰ in total leaf material and soluble sugars, respectively) along light gradients within the foliage of an isolated tree; (ii) internal conductance must be taken into account to adequately predict leaf Δ, and (iii) the spatial variations in Δ and water‐use efficiency resulted from the short‐term response of leaf gas exchange to variations in local irradiance and, to a much lesser extent, from the long‐term acclimation of leaf characteristics to the local light regime.  相似文献   
988.
The yeast HAL1 gene facilitates K+/Na+ selectivity and salt tolerance of cells. Ectopic expression of HAL1 in transgenic tomato (Lycopersicon esculentum Mill.) plants minimized the reduction in fruit production caused by salt stress. Maintenance of fruit production by transgenic plants was correlated with enhanced growth under salt stress of calli derived from the plants. The HAL1 transgene enhanced water and K+ contents in both leaf calli and leaves in the presence of salt, which indicates that HAL1 functions in plants using a similar mechanism to that in yeast, namely by facilitating K+/Na+ selectivity under salt stress.  相似文献   
989.
We investigated the physiological and growth responses of native (Populus fremontii S. Wats. and Salix gooddingii Ball) and exotic (Tamarix chinensis Lour.) riparian trees to ground water availability at the free‐flowing Hassayampa River, Arizona, during dry (1997) and wet (1998) years. In the drier year, all species experienced considerable water stress, as evidenced by low shoot water potentials, low leaf gas exchange rates and large amounts of canopy dieback. These parameters were significantly related to depth of ground water (DGW) in the native species, but not in T. chinensis, in 1997. Canopy dieback was greater in the native species than in T. chinensis when ground water was deep in 1997, and dieback increased rapidly at DGW > 2·5–3·0 m for the native species. Analysis of combined data from wet and dry years for T. chinensis tentatively suggests a similar physiological sensitivity to water availability and a similar DGW threshold for canopy dieback. In 1998, shoot water potential and leaf gas exchange rates were higher and canopy dieback was lower for all species because of increased water availability. However, T. chinensis showed a much larger increase in leaf gas exchange rates in the wet year than the native species. High leaf gas exchange rates, growth when water is abundant, drought tolerance and the maintenance of a viable canopy under dry conditions are characteristics that help explain the ability of T. chinensis to thrive in riparian ecosystems in the south‐western United States.  相似文献   
990.
A high frequency shoot organogenesis and plant establishment protocol has been developed for Coleus forskohlii from leaf derived callus. Optimal callus was developed from mature leaves on Murashige and Skoog (MS) medium supplemented with 2.4 μM kinetin alone. Shoots were regenerated from the callus on MS medium supplemented with 4.6 μM kinetin and 0.54 μM 1-naphthalene acetic acid. The highest rate of shoot multiplication was achieved at the sixth subculture and more than 150 shoots were produced per callus clump. Regenerated shootlets were rooted spontaneously on half-strength MS medium devoid of growth regulators. The in vitro raised plants were established successfully in soil. The amount of forskolin in in vitroraised plants and wild plants was estimated and found that they produce comparable quantity of forskolin. This in vitro propagation protocol should be useful for conservation as well as mass propagation of this plant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号