首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7641篇
  免费   754篇
  国内免费   918篇
  9313篇
  2024年   23篇
  2023年   141篇
  2022年   184篇
  2021年   218篇
  2020年   286篇
  2019年   313篇
  2018年   274篇
  2017年   288篇
  2016年   291篇
  2015年   274篇
  2014年   344篇
  2013年   512篇
  2012年   340篇
  2011年   314篇
  2010年   294篇
  2009年   317篇
  2008年   365篇
  2007年   391篇
  2006年   358篇
  2005年   315篇
  2004年   301篇
  2003年   331篇
  2002年   257篇
  2001年   259篇
  2000年   202篇
  1999年   220篇
  1998年   177篇
  1997年   193篇
  1996年   153篇
  1995年   116篇
  1994年   111篇
  1993年   115篇
  1992年   125篇
  1991年   100篇
  1990年   93篇
  1989年   88篇
  1988年   97篇
  1987年   59篇
  1986年   59篇
  1985年   80篇
  1984年   79篇
  1983年   48篇
  1982年   42篇
  1981年   38篇
  1980年   37篇
  1979年   15篇
  1978年   13篇
  1977年   19篇
  1976年   10篇
  1973年   9篇
排序方式: 共有9313条查询结果,搜索用时 10 毫秒
911.
Recent phenological studies in tropical deciduous forests revealed a mosaic of vegetation composed of several pheno-phases that are evolved as an adaptation by the species to overcome seasonal drought in different ways. These pheno-phases represent extent of annual deciduousness (~leaflessness) and triggering factors for buds break (e.g. vegetative and flower). Thus, studying patterns of various pheno-phases (phonological diversity) in tropical forest have been thought to provide a potential tool to address critical questions related to climate change modeling and monitoring. In tropics, tree species represent a gradient of deciduousness (from leaf-exchanging species to >6 months deciduous species) and flowering initiation (breaking of flower buds in various part of annual cycle). Both processes are mostly triggered by variation in day length and/or temperature during late dry season/autumn, and/or first significant rain during rainy season. In addition, few factors like drought induced leaf fall and sporadic winter rains are supposed to affect these processes temporarily. Besides, the abundances of pheno-phases (i.e. leafing and flowering) also vary among tropical deciduous forest trees. Presence of such variations in tropical tree pheno-phases and their abundances are reported to vary due to micro-climatic variables and has specific implications in tropical forests. Present paper discusses the existing information on various pheno-phases and their abundances in tropical forests and role of climatic factors on tree phonological diversity. Further, we emphasized the need to develop predicting understanding of impending climatic change (i.e. precipitation and temperature) on diversity of pheno-phases by collecting long-term data on tree pheno-phases through a network of phonological stations in dry tropics.  相似文献   
912.
The defective kernel (dek) mutants of maize are altered in both their embryo and endosperm development. Earlier studies have indicated that some of the dek mutants are unable to form shoot apical meristems or leaf primoirda. We have examined three embryo lethal dek mutants of this type, ptd*-1130, cp*-1418, and bno*-747B, to obtain a developmental profile for each. Allelism tests show that these three mutants are not allelic. Embryos were examined in early, mid-, and late kernel development as well as at kernel maturity by dissection and sectioning procedures and also at kernel maturity by scanning electron microscopy. All three mutants lag behind normal embryos in their rate of development. Embryos of ptd*-1130 reached the transition stage by early kernel development and progressed no further but underwent cell enlargement and necrosis during late kernel development. Embryos of cp*-1418 reached an early coleoptilar stage by midkernel development. They subsequently increased in size but did not form any leaf primordia. At kernel maturity, they no longer had a shoot apical meristem but often had a well formed root meristem. They appeared to remain healthy and did not become necrotic. Embryos of bno*747B reached the early coleoptilar stage by early kernel development but progressed no further. By kernel maturity, they had grown into masses of irregularly shaped embryonic tissue that no longer resembled any normal embryo stage but were not necrotic. None of these three mutants responded to attempts to support continued embryo development when cultured, but all three mutants formed callus on N6 and MS media supplemented with 2,4-D. These results indicate that these mutants are all uniformly blocked at specific stages early in embryonic development, have different subsequent developmental fates, and represent three different genes performing unique functions that are essential for embryogenesis.  相似文献   
913.
该文以青藏高原高寒草甸优势种垂穗披碱草(Elymus nutans)为研究对象, 探究不同水平氮肥与硅肥混合添加后对其叶片全氮含量和净光合速率的影响, 以期对高寒草甸牧场施肥提供一定的理论依据。研究发现: 氮、硅单独添加时, 均可提高垂穗披碱草叶片全氮含量以及净光合速率; 氮、硅配施处理对叶片全氮含量和净光合速率均存在显著的交互作用; 低(N1)、中(N2)、高(N3) 3种不同浓度的氮肥处理下, 低硅(Si1)添加对垂穗披碱草叶片全氮含量以及净光合速率没有显著的促进作用, 而添加中浓度硅肥(Si2)可显著提高垂穗披碱草叶片全氮含量; 低、中浓度施氮水平下, 中浓度硅肥可显著促进垂穗披碱草光合作用; 叶片全氮含量和净光合速率最大平均值均出现在中浓度氮、硅肥配施下, 与不施肥相比分别提高了119.99%和85.70%; 就该试验而言, 施加氮肥的同时, 适当添加一些硅肥能够更好地提高垂穗披碱草叶片全氮含量和净光合速率, 且硅的添加量为8 g·m-2时效果较好。  相似文献   
914.
《植物生态学报》1958,44(6):654
Epichloë内生真菌感染能够影响宿主植物的生长发育, 但关于内生真菌感染对宿主植物叶形状和叶面积的研究很少。该研究以羽茅(Achnatherum sibiricum)为实验材料, 采用长宽系数计算和扫描测定叶面积相结合的方法探究内生真菌种类和羽茅母本基因型对羽茅-内生真菌共生体叶形状和叶面积的影响。结果表明: 内生真菌感染与否、内生真菌种类和宿主母本基因型对反映叶形状的叶校正系数、叶片长度、宽度和长宽比均无显著影响, 经计算与验证, 确定了羽茅叶片的校正系数为0.594 9。采用该校正系数及叶长宽计算的叶面积与实测叶面积无显著差异, 且二者均未受到内生真菌感染与否、内生真菌种类或宿主植物母本基因型的显著影响。  相似文献   
915.
The role of auxin-binding protein 1 in the expansion of tobacco leaf cells   总被引:9,自引:0,他引:9  
Tobacco leaf was used to investigate the mechanism of action of auxin-binding protein 1 (ABP1). The distributions of free auxin, ABP1, percentage of leaf nuclei in G2 and the amount of auxin-inducible growth were each determined in control tobacco leaves and leaves over-expressing Arabidopsis ABP1. These parameters were compared with growth of tobacco leaves, measured both spatially and temporally throughout the entire expansion phase. Within a defined window of leaf development, juvenile leaf cells that inducibly expressed Arabidopsis ABP1 prematurely advanced nuclei to the G2 phase. The ABP1-induced increase in cell expansion occured before the advance to the G2 phase, indicating that the ABP1-induced G2 phase advance is an indirect effect of cell expansion. The level of ABP1 was highest at the position of maximum cell expansion, maximum auxin-inducible growth and where the free auxin level was the lowest. In contrast, the position of maximum cell division correlated with higher auxin levels and lower ABP1 levels. Consistent with the correlations observed in leaves, tobacco cells (BY-2) in culture displayed two dose-dependent responses to auxin. At a low auxin concentration, cells expanded, while at a relatively higher concentration, cells divided and incorporated [3H]-thymidine. Antisense suppression of ABP1 in these cells dramatically reduced cell expansion with negligible effect on cell division. Taken together, the data suggest that ABP1 acts at a relatively low level of auxin to mediate cell expansion, whereas high auxin levels stimulate cell division via an unidentified receptor.  相似文献   
916.
以不同生境的五柱绞股蓝为材料,对4个不同来源的五柱绞股蓝的叶片性状、裂叶数进行了统计,并以芦丁为对照品,采用分光光度法对4个居群五柱绞股蓝的总黄酮含量进行了测定。结果表明,五柱绞股蓝的叶型变异较大,其复叶具有3-9裂叶型类型,以7裂叶型和5裂叶型为主。相关性统计显示,野生型五柱绞股蓝黄酮含量高,与7裂叶型极显著相关,家种型五柱绞股蓝黄酮含量低,与叶型无关,环境因子可能是影响其黄酮含量的主要因子。在引种时,7裂叶型的五柱绞股蓝可作为优选资源引用。  相似文献   
917.
Recent studies have revealed large unexplained variation in heat requirement‐based phenology models, resulting in large uncertainty when predicting ecosystem carbon and water balance responses to climate variability. Improving our understanding of the heat requirement for spring phenology is thus urgently needed. In this study, we estimated the species‐specific heat requirement for leaf flushing of 13 temperate woody species using long‐term phenological observations from Europe and North America. The species were defined as early and late flushing species according to the mean date of leaf flushing across all sites. Partial correlation analyses were applied to determine the temporal correlations between heat requirement and chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat requirement for leaf flushing increased by almost 50% over the study period 1980–2012, with an average of 30 heat units per decade. This temporal increase in heat requirement was observed in all species, but was much larger for late than for early flushing species. Consistent with previous studies, we found that the heat requirement negatively correlates with chilling accumulation. Interestingly, after removing the variation induced by chilling accumulation, a predominantly positive partial correlation exists between heat requirement and precipitation sum, and a predominantly negative correlation between heat requirement and insolation sum. This suggests that besides the well‐known effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and insolation sum during dormancy. However, we hypothesize that the observed precipitation and insolation effects might be artefacts attributable to the inappropriate use of air temperature in the heat requirement quantification. Rather than air temperature, meristem temperature is probably the prominent driver of the leaf flushing process, but these data are not available. Further experimental research is thus needed to verify whether insolation and precipitation sums directly affect the heat requirement for leaf flushing.  相似文献   
918.
919.
Upland tropical forests have expanded and contracted in response to past climates, but it is not clear whether similar dynamics were exhibited by gallery (riparian) forests within savanna biomes. Because such forests generally have access to ample water, their extent may be buffered against changing climates. We tested the long‐term stability of gallery forest boundaries by characterizing the border between gallery forests and savannas and tracing the presence of gallery forest through isotopic analysis of organic carbon in the soil profile. We measured leaf area index, grass vs. shrub or tree coverage, the organic carbon, phosphorus, nitrogen and calcium concentrations in soils and the carbon isotope ratios of soil organic matter in two transitions spanning gallery forests and savanna in a Cerrado ecosystem. Gallery forests without grasses typically show a greater leaf area index in contrast to savannas, which show dense grass coverage. Soils of gallery forests have significantly greater concentrations of organic carbon, phosphorus, nitrogen and calcium than those of savannas. Soil organic carbon of savannas is significantly more enriched in 13C compared with that of gallery forests. This difference in enrichment is in part caused by the presence of C4 grasses in savanna ecosystem and its absence in gallery forests. Using the 13C abundance as a signature for savanna and gallery forest ecosystems in 1 m soil cores, we show that the borders of gallery forests have expanded into the savanna and that this process initiated at least 3000–4000 bp based on 14C analysis. Gallery forests, however, may be still expanding as we found more recent transitions according to 14C activity measurements. We discuss the possible mechanisms of gallery forest expansion and the means by which nutrients required for the expansion of gallery forest might accumulate.  相似文献   
920.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号