首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6953篇
  免费   517篇
  国内免费   459篇
  2024年   11篇
  2023年   100篇
  2022年   105篇
  2021年   120篇
  2020年   204篇
  2019年   210篇
  2018年   202篇
  2017年   237篇
  2016年   220篇
  2015年   190篇
  2014年   233篇
  2013年   466篇
  2012年   213篇
  2011年   309篇
  2010年   194篇
  2009年   349篇
  2008年   379篇
  2007年   355篇
  2006年   295篇
  2005年   312篇
  2004年   280篇
  2003年   223篇
  2002年   217篇
  2001年   184篇
  2000年   199篇
  1999年   172篇
  1998年   149篇
  1997年   147篇
  1996年   139篇
  1995年   116篇
  1994年   132篇
  1993年   138篇
  1992年   134篇
  1991年   124篇
  1990年   112篇
  1989年   92篇
  1988年   64篇
  1987年   74篇
  1986年   52篇
  1985年   77篇
  1984年   83篇
  1983年   43篇
  1982年   63篇
  1981年   51篇
  1980年   53篇
  1979年   29篇
  1978年   25篇
  1977年   23篇
  1976年   14篇
  1975年   5篇
排序方式: 共有7929条查询结果,搜索用时 312 毫秒
151.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
152.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   
153.
To establish the importance of fluorescein diacetate (FDA) as a viability stain for cultured hepatocytes. we hypothesized that FDA staining would correlate positively with hepatocyte viability and function. Mixtures of live and dead cells were stained with FDA and scanned by flow cytometry. A close correlation was observed between the live cell fraction and percent viability as determined by FDA staining (R2 = 0.962). Hepatocytes were also sorted into low fluorescence and high fluorescence groups. Both albumin production and lidocaine metabolism (P-450 activity) were significantly increased in the high fluorescence group compared to the low fluorescence group. An automated, fluorescence-activated assay was useful for rapid assessment of hepatocyte viability. In addition. the intensity of green fluorescence following staining with FDA correlated well with two specific measures of hepatocyte function.  相似文献   
154.
ABSTRACT. The microsporidium Chytridiopsis trichopterae n. sp., a parasite of the midgut epithelium of larvae of the caddis fly Polycentropus flavomaculatus found in southern Sweden, is described based on light microscopic and ultrastructural characteristics. All life cycle stages have isolated nuclei. Merogonial reproduction was not observed. the sporogony comprises two sequences: one with free spores in parasitophorous vacuoles, the other in spherical, 5.6-6.8 μm wide, sporophorous vesicles which lie in the cytoplasm. the free sporogony yields more than 20 spores per sporont. the vesicle-bound sporogony produces 8, 12 or 16 spores. the envelope of the sporophorous vesicle is about 82 nm thick and layered. the internal layer is the plasma membrane of the sporont; the surface layer is electron dense with regularly arranged translucent components. Both spore types are spherical. They have an ~ 35-nm thick spore wall, with a plasma membrane, an electron-lucent endospore, and an ~ 14-nm thick electron-dense exospore. the polar sac is cup-like and lacks a layered anchoring disc. the polar filament is arranged in two to three isofilar coils in the half of the spore opposite the nucleus. the coupling between the polar sac and the polar filament is characteristic. the surface of the polar filament is covered with regularly arranged membraneous chambers resembling a honeycomb. There is no polaroplast of traditional type. the cytoplasm lacks polyribosomes. the nucleus has a prominent, wide nucleolus. the two spore types have identical construction, but differ in dimensions and electron density. Free living spores are about 3.2 μm wide, the diameter of the polar filament proper is 102-187 nm, the chambers of the honeycomb are 70-85 nm high, and the polar sac is up to 425 nm wide. Living spores in the vesicle-bound sporogony are about 2.1 μm wide, the polar filament measures 69-102 nm, the chambers of the honeycomb are about 45 nm high, and these spores are more electron dense. Comparisons of cytology (especially the construction of the spore wall and the polar filament and associated structures) and life cycles reveal prominent differences among the Chytridiopsis-like microsporidia, and close relationships between the families Chytridiopsidae and Metchnikovellidae.  相似文献   
155.
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of14CO2 production from [U–14C]glutamate, [U–14C]aspartate and [1–14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of -ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons.  相似文献   
156.
Summary The rate of ethanolic fermentation of high gravity wheat mashes bySaccharomyces cerevisiae was increased by nitrogen sources such as ammonium sulfate or arginine. This stimulation was mediated through increased proliferation of cells. Large quantities of proline, however, were excreted by the yeast into the medium when arginine was added as a nutrient supplement. The amount of proline excreted was proportional to the concentration of arginine supplied. Nitrogen sources such as ammonium sulfate or lysine enhanced the production of proline from arginine and its excretion into the medium. Results show that the stimulation of very high gravity fermentation by arginine is not merely through provision of a source of nitrogen but also because it serves as a precursor for the production of proline, a compound which may play a significant role in alleviating the effects of osmotic stress.  相似文献   
157.
For more than 20 years scientists of the ‘Food-chain studies’ Group of the former Limnological Institute have been studying interactions within the pelagic food web. Purpose of research was to explain the structure and dynamics of the zooplankton and fish communities in lakes and reservoirs in relation to biotic and abiotic environmental factors. A so-called multi-species approach was used, in which all common and abundant species within a specific ecosystem were studied on the individual and population level with the same degree of detail. The recent results and the scientific approach used are evaluated and the main gaps in knowledge about food-web dynamics in shallow eutrophic lakes are identified and discussed. It is concluded that instead of the purely functional approach used so far, future studies should also include evolutionary aspects which determine the success of an organism in a given environment and that more attention should be paid to central questions in ‘community ecology’. This paper is based on a lecture given by the first author for the Netherlands Society of Aquatic Ecology on May 12th, 1992, in Amsterdam, The Netherlands.  相似文献   
158.

Aim

Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe.

Location

Global.

Time period

Present.

Major taxa studied

Birds, mammals and amphibians.

Methods

Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a “species–energy model” by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in “wilderness” areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists.

Results

Species–energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R2-values: 0.79–0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57).

Main conclusions

Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species–area relationships to improve predictions of land-use-driven biodiversity loss.  相似文献   
159.
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5′-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1–90.1 g L−1 were observed together with an overproduction of ApMTAP in a 1.9%–3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg−1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.  相似文献   
160.
The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50/mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号