全文获取类型
收费全文 | 12418篇 |
免费 | 889篇 |
国内免费 | 654篇 |
专业分类
13961篇 |
出版年
2024年 | 49篇 |
2023年 | 280篇 |
2022年 | 386篇 |
2021年 | 550篇 |
2020年 | 491篇 |
2019年 | 747篇 |
2018年 | 584篇 |
2017年 | 328篇 |
2016年 | 383篇 |
2015年 | 588篇 |
2014年 | 696篇 |
2013年 | 953篇 |
2012年 | 538篇 |
2011年 | 574篇 |
2010年 | 462篇 |
2009年 | 611篇 |
2008年 | 571篇 |
2007年 | 622篇 |
2006年 | 617篇 |
2005年 | 492篇 |
2004年 | 481篇 |
2003年 | 476篇 |
2002年 | 454篇 |
2001年 | 298篇 |
2000年 | 252篇 |
1999年 | 222篇 |
1998年 | 217篇 |
1997年 | 173篇 |
1996年 | 165篇 |
1995年 | 123篇 |
1994年 | 96篇 |
1993年 | 83篇 |
1992年 | 56篇 |
1991年 | 47篇 |
1990年 | 38篇 |
1989年 | 24篇 |
1988年 | 24篇 |
1987年 | 19篇 |
1986年 | 21篇 |
1985年 | 24篇 |
1984年 | 26篇 |
1983年 | 19篇 |
1982年 | 23篇 |
1981年 | 16篇 |
1980年 | 11篇 |
1979年 | 13篇 |
1978年 | 8篇 |
1977年 | 12篇 |
1976年 | 6篇 |
1975年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
Mitochondria sense and shape cytosolic Ca2+ signals by taking up and subsequently releasing Ca2+ ions during physiological and pathological Ca2+ elevations. Sustained elevations in the mitochondrial matrix Ca2+ concentration are increasingly recognized as a defining feature of the intracellular cascade of lethal events that occur in neurons during cerebral ischemia. Here, we review the recently identified transport proteins that mediate the fluxes of Ca2+ across mitochondria and discuss the implication of the permeability transition pore in decoding the abnormally sustained mitochondrial Ca2+ elevations that occur during cerebral ischemia. 相似文献
62.
Ciesielska E Studzian K Wasowska M Oszczapowicz I Szmigiero L 《Cell biology and toxicology》2005,21(3-4):139-147
Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3′ position of the daunosamine
moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties.
An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety
(DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was
not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction
of DNA breaks and DNA–protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks
mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The
first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites
to DNA. It is hypothesized that the replacement of the primary amino group (–NH2) at the C-3′ position of the daunosamine moiety by a trisubstituted amidino group (–N=CH–NRR) may be a route to the synthesis
of anthracycline derivatives with enhanced ability to form covalent adducts to DNA. 相似文献
63.
Functional mapping of the surface of Escherichia coli ribose-binding protein: mutations that affect chemotaxis and transport. 下载免费PDF全文
R. A. Binnie H. Zhang S. Mowbray M. A. Hermodson 《Protein science : a publication of the Protein Society》1992,1(12):1642-1651
Ribose-binding protein is a bifunctional soluble receptor found in the periplasm of Escherichia coli. Interaction of liganded binding protein with the ribose high affinity transport complex results in the transfer of ribose across the cytoplasmic membrane. Alternatively, interaction of liganded binding protein with a chemotactic signal transducer, Trg, initiates taxis toward ribose. We have generated a functional map of the surface of ribose-binding protein by creating and analyzing directed mutations of exposed residues. Residues in an area on the cleft side of the molecule including both domains have effects on transport. A portion of the area involved in transport is also essential to chemotactic function. On the opposite face of the protein, mutations in residues near the hinge are shown to affect chemotaxis specifically. 相似文献
64.
Induction of an interferon-gamma Stat3 response in nerve cells by pre-treatment with gp130 cytokines
Many cytokines mediate their effects through Jak/STAT signaling pathways providing many opportunities for cross-talk between different cytokines. We examined the interaction between two cytokine families, gp130-related cytokines and interferon-gamma (IFN-gamma), which are coexpressed in the nervous system during acute trauma and pathological conditions. Typical nerve cells show an IFN-gamma response that is restricted to activating STAT1, with minor activation of STAT3. IFN-gamma elicited a pronounced STAT3 response in cells pre-treated for 5-7 h with ciliary neurotrophic factor (CNTF), leukemia inhibitory factor or interleukin-6. CNTF or interleukin-6 induced an IFN-gamma STAT3 response in a variety of cells including SH-SY5Y human neuroblastoma, HMN-1 murine motor neuron hybrid cells, rat sympathetic neurons and human hepatoma HepG2 cells. The enhancement was measured as an increase in tyrosine phosphorylated STAT3, in STAT3-DNA binding and in STAT-luciferase reporter gene activity. The enhanced STAT3 response was not due to an increase in overall STAT3 levels but was dependent upon ongoing protein synthesis. The induction by CNTF was inhibited by the protein kinase C inhibitor, BIM, and the MAPK-kinase inhibitor, U0126. Further, H-35 hepatoma cells expressing gp130 receptor chimeras lacking either the SHP-2 docking site or the Box 3 STAT binding sites failed to enhance the IFN-gamma STAT3 response. These results provide evidence for an interaction between gp130 and IFN-gamma cytokines that can significantly alter the final cellular response to IFN-gamma. 相似文献
65.
A wide range of host cellular signal transduction pathways can be stimulated by influenza virus infection. Some of these signal transduction pathways induce the host cell’s innate immune response against influenza virus, while others are essential for efficient influenza virus replication. This review examines the cellular signaling induced by influenza virus infection in host cells, including host pattern recognition receptor (PRR)-related signaling, protein kinase C (PKC), Raf/MEK/ERK and phosphatidylinositol- 3-kinase (PI3K)/Akt signaling, and the corresponding effects on the host cell and/or virus, such as recognition of virus by the host cell, viral absorption and entry, viral ribonucleoprotein (vRNP) export, translation control of cellular and viral proteins, and virus-induced cell apoptosis. Research into influenza virus-induced cell signaling promotes a clearer understanding of influenza virus-host interactions and assists in the identification of novel antiviral targets and antiviral strategies. 相似文献
66.
Mitogenic cell proliferation requires a rapid and transient H2O2 generation, which is blocked by catalase or PKA activators. Previously, we observed that anemic HIV(+) individuals expressed acidic pIs of catalase in RBC with significantly high activities [Mol Cell Biochem 165: 77–81, 1996]. These findings led us to hypothesize that cell signaling molecules regulate catalase to control cell mitogenesis. To test the hypothesis, we determined (i) whether RBC counts correlate with their catalase activities, (ii) whether protein kinases and phosphatases alter catalase activity in vitro, and (iii) whether protein kinase activators increase catalase activity to suppress proliferation of cultured cells. The results indicated that RBC counts inversely correlated with RBC catalase activities in both HIV(+) (r: –0.6769, r2: 0.4582, n: 69 male, p < 0.0001) and HIV(–) (r: –0.3827, r2: 0.1464, n: 177 male, p < 0.0001) populations. Catalytic PKA, PKC and Casein Kinase II, but none of PKG, Ca2+/calmodulin kinase II and p34cdc/cyclinB, rapidly elevated catalase activity in vitro by up to 2-fold. Whereas a major CAT subunit (60 kDa) showed immunoreactive phosphoserine and phosphothreonine, the kinases- and -32P-ATP-dependent phosphorylation occurred with a minor component (110 kDa). Among PKC isozymes examined, PKCz was the most effective modulator followed by PKC, and protein phosphatase 1 and 2A decreased the catalase activity. PKA and PKCz activators of forskolin and okadaic acid increased catalase activity and 110 kDa expression in NIH3T3 cells up to 2.4-fold and suppressed the cell growth, showing an inverse correlation of the indices (r: –0.9286, r2: 0.8622, n: 18, p < 0.0001). Taken together, these results suggest for the first time that catalase is under the regulation of cell signaling molecules and capable of modulating mitogenic cell proliferation. 相似文献
67.
Tianhai Tian 《Cell cycle (Georgetown, Tex.)》2014,13(15):2379-2390
Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution. 相似文献
68.
PomA, a homolog of MotA in the H+-driven flagellar motor, is an essential component for torque generation in the Na+-driven flagellar motor. Previous studies suggested that two charged residues, R90 and E98, which are in the single cytoplasmic loop of MotA, are directly involved in this process. These residues are conserved in PomA of Vibrio alginolyticus as R88 and E96, respectively. To explore the role of these charged residues in the Na+-driven motor, we replaced them with other amino acids. However, unlike in the H+-driven motor, both of the single and the double PomA mutants were functional. Several other positively and negatively charged residues near R88 and E96, namely K89, E97 and E99, were neutralized. Motility was retained in a strain producing the R88A/K89A/E96Q/E97Q/E99Q (AAQQQ) PomA protein. The swimming speed of the AAQQQ strain was as fast as that of the wild-type PomA strain, but the direction of motor rotation was abnormally counterclockwise-biased. We could, however, isolate non-motile or poorly motile mutants when certain charged residues in PomA were reversed or neutralized. The charged residues at positions 88-99 of PomA may not be essential for torque generation in the Na+-driven motor and might play a role in motor function different from that of the equivalent residues of the H+-driven motor. 相似文献
69.
Cyanobacteria have developed various response mechanisms in long evolution to sense and adapt to external or internal changes under abiotic stresses. The signal transduction system of a model cyanobacterium Synechocystis sp. PCC 6803 includes mainly two-component signal transduction systems of eukaryotic-type serine/threonine kinases (STKs), on which most have been investigated at present. These two-component systems play a major role in regulating cell activities in cyanobacteria. More and more co-regulation and crosstalk regulations among signal transduction systems had been discovered due to increasing experimental data, and they are of great importance in corresponding to abiotic stresses. However, mechanisms of their functions remain unknown. Nevertheless, the two signal transduction systems function as an integral network for adaption in different abiotic stresses. This review summarizes available knowledge on the signal transduction network in Synechocystis sp. PCC 6803 and biotechnological implications under various stresses, with focuses on the co-regulation and crosstalk regulations among various stress-responding signal transduction systems. 相似文献
70.
Katharina Simon Stephanie Hennen Nicole Merten Stefanie Bl?ttermann Michel Gillard Evi Kostenis Jesus Gomeza 《The Journal of biological chemistry》2016,291(2):705-718
Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis. 相似文献