首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55699篇
  免费   3675篇
  国内免费   2404篇
  2024年   106篇
  2023年   909篇
  2022年   1293篇
  2021年   1730篇
  2020年   1674篇
  2019年   2184篇
  2018年   1893篇
  2017年   1299篇
  2016年   1416篇
  2015年   1876篇
  2014年   2843篇
  2013年   3786篇
  2012年   1997篇
  2011年   2565篇
  2010年   1966篇
  2009年   2314篇
  2008年   2371篇
  2007年   2498篇
  2006年   2244篇
  2005年   2131篇
  2004年   1933篇
  2003年   1705篇
  2002年   1653篇
  2001年   1363篇
  2000年   1180篇
  1999年   1079篇
  1998年   1025篇
  1997年   954篇
  1996年   878篇
  1995年   916篇
  1994年   831篇
  1993年   794篇
  1992年   761篇
  1991年   707篇
  1990年   584篇
  1989年   602篇
  1988年   571篇
  1987年   482篇
  1986年   398篇
  1985年   513篇
  1984年   724篇
  1983年   456篇
  1982年   570篇
  1981年   503篇
  1980年   406篇
  1979年   375篇
  1978年   201篇
  1977年   142篇
  1976年   142篇
  1973年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.  相似文献   
112.
113.
114.
Changsung Kim 《BMB reports》2015,48(5):256-265
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]  相似文献   
115.
Abstract. Anopheles stephensi mosquitoes which had fed upon mice infected with Plasmodium yoelii nigeriensis malaria parasites produced significantly fewer eggs than mosquitoes fed on an uninfected mouse. Fecundity reduction was more pronounced when the bloodmeal contained malaria gametocytes and the mosquitoes developed oocysts. Egg production and haematin excretion were correlated for uninfected bloodfed mosquitoes; the presence of P.y. nigeriensis in the blood affected this relationship. Reduced fecundity was associated with a significant reduction of bloodmeal size (measured by haematin excretion) in mosquitoes which ingested gametocytaemic blood. The bloodmeal size in mosquitoes fed on parasitaemic blood without gametocytes was not significantly reduced. The use of haematin assays for determination of bloodmeal size in mosquitoes is discussed.  相似文献   
116.
Squalene is a lipophilic and non-volatile triterpene with many industrial applications for food, pharmaceuticals, and cosmetics. Metabolic engineering focused on optimization of the production pathway suffer from little success in improving titers because of a limited space of the cell membrane accommodating the lipophilic product. Extension of cell membrane would be a promising approach to overcome the storage limitation for successful production of squalene. In this study, Escherichia coli was engineered for squalene production by overexpression of some membrane proteins. The highest production of 612 mg/L was observed in the engineered E. coli with overexpression of Tsr, a serine chemoreceptor protein, which induced invagination of inner membrane to form multilayered structure. It was also observed an increase in unsaturated fatty acid in membrane lipids composition, suggesting cellular response to maintain membrane fluidity against squalene accumulation in the engineered strain. This study potentiates the capability of E. coli for squalene production and provides an effective strategy for the enhanced production of such compounds.  相似文献   
117.
《Developmental cell》2022,57(14):1694-1711.e7
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   
118.
Metabolism at the cytosol–mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.  相似文献   
119.
The villus cavity cells, a specific cell type of the chick chorioallantoic membrane, express both cytosolic carbonic anhydrase in their cytoplasm and [Formula: See Text] anion exchangers at their basolateral membranes. By immunohistochemical analysis, we show here that villus cavity cells specifically react with antibodies directed against the membrane-associated form of carbonic anhydrase, CAIV. Staining is restricted to the apical cell membranes, characteristically invaginated toward the shell membrane, as well as to endothelia of blood vessels present in the mesodermal layer. The occurrence of a membrane-associated CA form at the apical pole of villus cavity cells, when definitively confirmed, would be fairly consistent with the role proposed for these cells in bicarbonate reabsorption from the eggshell so to prevent metabolic acidosis in the embryo during development.  相似文献   
120.
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V‐ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co‐localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E‐Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V‐ATPase subunits. By contrast, the V‐ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号