首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43826篇
  免费   3128篇
  国内免费   2052篇
  49006篇
  2024年   95篇
  2023年   799篇
  2022年   1106篇
  2021年   1514篇
  2020年   1450篇
  2019年   1945篇
  2018年   1610篇
  2017年   1094篇
  2016年   1216篇
  2015年   1579篇
  2014年   2405篇
  2013年   3133篇
  2012年   1705篇
  2011年   2174篇
  2010年   1600篇
  2009年   1877篇
  2008年   1894篇
  2007年   2000篇
  2006年   1789篇
  2005年   1703篇
  2004年   1523篇
  2003年   1324篇
  2002年   1306篇
  2001年   1104篇
  2000年   916篇
  1999年   839篇
  1998年   792篇
  1997年   736篇
  1996年   696篇
  1995年   657篇
  1994年   616篇
  1993年   563篇
  1992年   547篇
  1991年   512篇
  1990年   394篇
  1989年   399篇
  1988年   363篇
  1987年   295篇
  1986年   249篇
  1985年   309篇
  1984年   397篇
  1983年   226篇
  1982年   296篇
  1981年   287篇
  1980年   223篇
  1979年   207篇
  1978年   147篇
  1977年   102篇
  1976年   111篇
  1974年   47篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
901.
Formic acid is a highly energetic electron donor but it has previously resulted in low power densities in microbial fuel cells (MFCs). Three different set anode potentials (-0.30, -0.15, and +0.15 V; vs. a standard hydrogen electrode, SHE) were used to evaluate syntrophic interactions in bacterial communities for formic acid degradation relative to a non-controlled, high resistance system (1,000 Ω external resistance). No current was generated at -0.30 V, suggesting a lack of direct formic acid oxidation (standard reduction potential: -0.40 V). More positive potentials that allowed for acetic acid utilization all produced current, with the best performance at -0.15 V. The anode community in the -0.15 V reactor, based on 16S rDNA clone libraries, was 58% Geobacter sulfurreducens and 17% Acetobacterium, with lower proportions of these genera found in the other two MFCs. Acetic acid was detected in all MFCs suggesting that current generation by G. sulfurreducens was dependent on acetic acid production by Acetobacterium. When all MFCs were subsequently operated at an external resistance for maximum power production (100 Ω for MFCs originally set at -0.15 and +0.15 V; 150 Ω for the control), they produced similar power densities and exhibited the same midpoint potential of -0.15 V in first derivative cyclic voltammetry scans. All of the mixed communities converged to similar proportions of the two predominant genera (ca. 52% G. sulfurreducens and 22% Acetobacterium). These results show that syntrophic interactions can be enhanced through setting certain anode potentials, and that long-term performance produces stable and convergent communities.  相似文献   
902.
903.
Locke M 《Tissue & cell》1985,17(6):901-921
Epidermal cells in Calpodes and other insects form basal processes or feet that at first extend axially and later shorten at the same time as the larval segment shortens to the pupal shape. The feet grow into spaces at the surfaces of other cells to make a basal interlacing meshwork of cellular extensions that are combined mechanically by their desmosomal attachments to cell bodies above and to the basal lamina below. Microtubules and microfilaments are linked to these junctions by a reticular fibrous matrix. Gap junctions on the feet may couple cells that are several cell bodies removed from one another. The meshwork is also a sieve separating the hemolymph from the spaces between cells to form an intercellular compartment. Entry to the intercellular compartment is through the sieve made by the negatively charged basolateral cell surfaces that can prevent the entry of positively charged molecules such as cationic ferritin. As the cells become columnar, coincident with the metamorphic change in segment shape, the feet shorten and pack more densely together. At this time the basal lamina buckles axially as if responding to contraction of the feet. Segment shape change involves cell rearrangement and relative cell movement, necessitating the transient loss of plasma membrane plaque attachments to the cuticle apically and the loss of junctions laterally. Gap junctions involute in characteristic vacuoles. The metamorphic reduction in cell surface area coincides with the loss of basolateral membrane in smooth tubes and vesicles and the turnover of the apical surface in multivesicular bodies. New apical plasma membrane plaques and new lateral and basal junctions stabilize the cells in their pupal positions.  相似文献   
904.
软骨血管生成抑制因子抑制血管生成的研究   总被引:13,自引:1,他引:13  
小牛气管软骨经盐酸胍抽提,丙酮分级沉淀,膜超滤,柱层析等步骤得到软骨血管生成抑制因子(cartilage angiogenesis inhibiting factor,CAIF).SDS-聚丙烯酰胺凝胶电泳显示CAIF由单一组分组成,分子量为27700.通过[ 3H]-TdR掺入,活细胞检测等方法测定CAIF对内皮细胞、Hela细胞、QGY7703细胞与小鼠骨髓细胞、人皮肤成纤维细胞等的DNA合成的影响,以及细胞毒作用.采用鸡胚绒毛尿囊膜实验测定CAIF对血管生成的抑制效应.结果显示:CAIF对内皮细胞产生强的抑制作用,对Hela细胞抑制很弱,对QGY7703细胞、小鼠骨髓细胞、人皮肤成纤维细胞均无抑制作用;对鸡胚绒毛尿囊膜的血管生成产生明显的抑制作用.提示CAIF能较特异地抑制血管生成,CAIF达到电泳纯,是专一性较强的血管生成抑制因子.  相似文献   
905.
906.
Cell wall material (CWM) isolated from beeswing wheat bran contains 66% carbohydrate, 12% Klason lignin, 6% protein and 4% ash. The relative proportions of sugars in the CWM are arabinose 34%, xylose 26%, galactose 2%, glucose 32% and uronic acid 6%. The uronic acid was shown to consist of glucuronic acid and its 4-O-Me analogue in the ratio 1.8:1. Partial acid hydrolysis of the CWM yielded neutral sugars and a uronic acid fraction. The latter was shown to contain Glc p A-(1→2)-Xyl p and Glc p A-(1→2)-O-Xyl p-(1→4)-Xyl p and their 4-O-Me substituted uronic acid analogues. Methylation analysis of the whole CWM and partially degraded methylated CWM revealed the nature of the constituent glycosidic linkages. From the combined evidence we infer that the major structural features of the non-cellulosic polysaccharides are a linear chain of xylopyranose units joined by (1→4)-linkages, and arabinofuranose, xylose, galactose (and uronic acid) end groups, which in at least some of the polysaccharides, are attached directly by (1→2)- and/or (1→3)-linkages to the xylan chain. The CWM has been fractionated by successive extractions with water at 80°, 0.2 M (NH4)2C2O4 at 80°, Na chlorite/HOAc at 70°, 0.2 M (NH4)2C2O4 at 80°, 1 M and 4 M KOH, and the neutral sugar composition of the fractions determined. It is concluded from these and other experiments that the CWM contains two main types of polysaccharides, the arabinoxylans and cellulosic polymers, and that phenolic ester linkages play a role in holding them together.  相似文献   
907.
The BALB/3T3 clone A31 mouse embryo cell line has been used by many investigators as a model “normal” “fibroblast” line for a variety of in vitro studies. It has been shown, however, that these cells are not “normal” because they will produce tumors within 2–4 months if 3 × 104 cells are implanted subcutaneously in BALB/c mice attached to 0.2 × 5 × 10-mm plastic plates. Previous studies also suggested that these cells were not fibroblasts because they gave rise to tumors with the characteristics of vascular endothelium not fibroblasts. We now report that BALB/3T3 (clone A31), BALB/3T3-T, a proadipocyte subclone of clone A31 cells, and six recent subclones of BALB/3T3-T cells show additional differentiation patterns when tumors derived by implantation of these cells attached to plastic plates are examined. Differentiation into pericytes, chondrocytes, and fibroblasts was observed. We conclude that the BALB/3T3 clone A31 cell line and related lines are multipotent mesenchymal cells which are capable of differentiation into a variety of cell types.  相似文献   
908.
Human cell lines derived from three epithelial carcinomas (CaSki, HeLa, SiHa), one B lymphoma (BL60), one promyelocytic (HL60), one monocytic (U937) leukemia, one chronic myelogenous leukemia (sensitive K562S; multichemoresistant K562R) and normal human skin fibroblasts were compared for their capacity of staining with rhodamine 123 (Rh 123) and their kinetics of dye exclusion. Cells were exposed for 30 min to 10 g/ml of Rh 123 in culture medium; fluorescence intensity was measured by flow cytometry immediately or 1, 2, 3 and 4 h after staining. The highest fluorescence intensity was observed in carcinoma cell lines; there was no incorporation in multichemoresistant K562R cells. Exclusion of Rh 123 was evaluated from 0 to 4 h, both by flow cytometry and by fluorimetry. Fluorescence intensity measured by flow cytometry decreased slightly in carcinoma and leukemia cells and rapidly in fibroblasts. In all cell lines Rh 123 exclusion was inhibited by 40 mol/L verapamil and 5 mmol/L probenecid. Thus, incorporation and exclusion of Rh 123 allows distinction between normal and tumoral cells; moreover, inhibition of exclusion by verapamil and probenecid favors the involvement of active cell membrane mechanisms in the exclusion process.Abbreviations PBS phosphate-buffered saline - Rh 123 rhodamine 123  相似文献   
909.
小鼠胚胎与子宫单层上皮细胞共培养的研究   总被引:11,自引:0,他引:11  
本文报道建立了小鼠胚胎与小鼠子宫单层上皮细胞体外共培养系统。结果揭示;小鼠胚胎与 子宫单层上皮细胞共培养可以促进胚胎的发育、粘附和扩展;如果培养液中加入 3、67 × 10-6mol/L 17β-雌二醇,可以显著提高胚胎在共培养系统中的发育率、粘附率和扩展率。以上结果表明:小鼠 胚胎与小鼠子宫单层上皮细胞共培养系统是研究胚泡着床机理较理想的研究手段。  相似文献   
910.
Engineering challenges in high density cell culture systems   总被引:2,自引:0,他引:2  
Ozturk SS 《Cytotechnology》1996,22(1-3):3-16
High density cell culture systems offer the advantage of production of bio-pharmaceuticals in compact bioreactors with high volumetric production rates; however, these systems are difficult to design and operate. First of all, the cells have to be retained in the bioreactor by physical means during perfusion. The design of the cell retention is the key to performance of high density cell culture systems. Oxygenation and media design are also important for maximizing the cell number. In high density perfusion reactors, variable cell density, and hence the metabolic demand, require constant adjustment of perfusion rates. The use of cell specific perfusion rate (CSPR) control provides a constant environment to the cells resulting in consistent production. On-line measurement of cell density and metabolic activities can be used for the estimation of cell densities and the control of CSPR. Issues related to mass transfer and mixing become more important at high cell densities. Due to the difference in mass transfer coefficients for oxygen and CO2, a significant accumulation of dissolved CO2 is experienced with silicone tubing aeration. Also, mixing is observed to decrease at high densities. Base addition, if not properly done, could result in localized cell lysis and poor culture performance. Non-uniform mixing in reactors promotes the heterogeneity of the culture. Cell aggregation results in segregation of the cells within different mixing zones. This paper discusses these issues and makes recommendations for further development of high density cell culture bioreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号