首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43625篇
  免费   3100篇
  国内免费   2033篇
  2024年   95篇
  2023年   797篇
  2022年   1105篇
  2021年   1508篇
  2020年   1448篇
  2019年   1940篇
  2018年   1603篇
  2017年   1092篇
  2016年   1209篇
  2015年   1569篇
  2014年   2389篇
  2013年   3111篇
  2012年   1696篇
  2011年   2163篇
  2010年   1589篇
  2009年   1863篇
  2008年   1881篇
  2007年   1990篇
  2006年   1776篇
  2005年   1691篇
  2004年   1513篇
  2003年   1312篇
  2002年   1301篇
  2001年   1091篇
  2000年   915篇
  1999年   836篇
  1998年   787篇
  1997年   733篇
  1996年   693篇
  1995年   655篇
  1994年   612篇
  1993年   564篇
  1992年   546篇
  1991年   510篇
  1990年   391篇
  1989年   397篇
  1988年   362篇
  1987年   295篇
  1986年   248篇
  1985年   309篇
  1984年   396篇
  1983年   225篇
  1982年   296篇
  1981年   286篇
  1980年   223篇
  1979年   206篇
  1978年   147篇
  1977年   102篇
  1976年   111篇
  1974年   47篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
771.
Three major glycan fractions of 580 kDa (g580), 150 kDa (g150), and 2 kDa (g2) were isolated and purified from Lytechinus pictus sea urchin embryos at the mesenchyme blastula stage by gel filtration and high pressure liquid chromatography. Chemical analysis, by gas chromatography, revealed that g580 is highly sulfated and rich in N-acetylglucosamine, N-acetylgalactosamine, glucuronic acid, and fucose. The g150 fraction is less acidic than g580 and contains high amounts of amino sugars, xylose, and mannose. The g2 fraction is neutral, rich in N-acetylglucosamine, mannose, and galactose. The g580 and g150 fractions are resistant to glycosaminoglycan-degrading enzymes, indicating that they are distinct from the glycosaminoglycans. The g580 fraction resembles, with respect to chemical composition, a previously characterized 200 kDa sponge adhesion glycan (g200). The binding of the monoclonal antibody Block 2, which recognizes a repetitive epitope on g200, as well as of the anti-g580 polyclonal antibodies to both g580 and g200 indicated that these two glycans share similar antigenic determinants. The Fab fragments of the Block 2 antibody, which previously have been shown to inhibit cell adhesion in sponges, also blocked the reaggregation of dissociated sea urchin mesenchyme blastula cells. These results indicate that g580 carries a carbohydrate epitope, similar to the sponge adhesion epitope of g200, which is involved in sea urchin embryonal cell adhesion.  相似文献   
772.
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50/mL), more than 4–100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15–30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.  相似文献   
773.
Efforts to leverage clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) for targeted genomic modifications in mammalian cells are limited by low efficiencies and heterogeneous outcomes. To aid method optimization, we developed an all-in-one reporter system, including a novel superfolder orange fluorescent protein (sfOrange), to simultaneously quantify gene disruption, site-specific integration (SSI), and random integration (RI). SSI strategies that utilize different donor plasmid formats and Cas9 nuclease variants were evaluated for targeting accuracy and efficiency in Chinese hamster ovary cells. Double-cut and double-nick donor formats significantly improved targeting accuracy by 2.3–8.3-fold and 19–22-fold, respectively, compared to standard circular donors. Notably, Cas9-mediated donor linearization was associated with increased RI events, whereas donor nicking minimized RI without sacrificing SSI efficiency and avoided low-fidelity outcomes. A screen of 10 molecules that modulate the major mammalian DNA repair pathways identified two inhibitors that further enhance targeting accuracy and efficiency to achieve SSI in 25% of transfected cells without selection. The optimized methods integrated transgene expression cassettes with 96% efficiency at a single locus and with 53%–55% efficiency at two loci simultaneously in selected clones. The CRISPR-based tools and methods developed here could inform the use of CRISPR/Cas9 in mammalian cell lines, accelerate mammalian cell line engineering, and support advanced recombinant protein production applications.  相似文献   
774.
Knr4/Smi1 proteins are specific to the fungal kingdom and their deletion in the model yeast Saccharomyces cerevisiae and the human pathogen Candida albicans results in hypersensitivity to specific antifungal agents and a wide range of parietal stresses. In S. cerevisiae, Knr4 is located at the crossroads of several signalling pathways, including the conserved cell wall integrity and calcineurin pathways. Knr4 interacts genetically and physically with several protein members of those pathways. Its sequence suggests that it contains large intrinsically disordered regions. Here, a combination of small-angle X-ray scattering (SAXS) and crystallographic analysis led to a comprehensive structural view of Knr4. This experimental work unambiguously showed that Knr4 comprises two large intrinsically disordered regions flanking a central globular domain whose structure has been established. The structured domain is itself interrupted by a disordered loop. Using the CRISPR/Cas9 genome editing technique, strains expressing KNR4 genes deleted from different domains were constructed. The N-terminal domain and the loop are essential for optimal resistance to cell wall-binding stressors. The C-terminal disordered domain, on the other hand, acts as a negative regulator of this function of Knr4. The identification of molecular recognition features, the possible presence of secondary structure in these disordered domains and the functional importance of the disordered domains revealed here designate these domains as putative interacting spots with partners in either pathway. Targeting these interacting regions is a promising route to the discovery of inhibitory molecules that could increase the susceptibility of pathogens to the antifungals currently in clinical use.  相似文献   
775.
776.
Growth of cells in a new defined protein-free medium   总被引:1,自引:0,他引:1  
The development of a new stable synthetic serum replacement (SSR) is described, which allows the cultivation of mammalian cells in a defined, protein-free medium containing only dialyzable components. With a low concentration of insulin (RPMI-SR2 medium), growth rates of the transformed cell lines L929, HELA S3, and the hybridoma 1E6 were comparable to growth rates obtained with a serum-containing medium. The same medium also supported long-term cultivation of non-dividing mouse macrophages. The main principle of SSR is a metal ion buffer containing a balanced mixture of iron and trace metals. Stability against precipitation of important metals is achieved by the combined use of EDTA and citric acid as chelating agents. Efficient iron supply is mediated through the inclusion of the compound Aurintricarboxylic acid as a synthetic replacement for transferrin. SSR also contains a growth-promoting surfactant, Pluronic F68. Thus SSR provides a general foundation for growth and differentiation normally provided by serum.Limitations of other serum-free medium designs are discussed here: 1) the inability of transferrin to chelate all metals in the medium; and 2) the use of inorganic iron salts or iron citrate as an iron supplement leads to rapid precipitation of iron hydroxide in the medium. Both these problems are solved in the design of SSR.  相似文献   
777.
Possible roles of coexisting cells in inducing neurite growth from a nerve cell were studied. Nerve growth factor (NGF)-inducing neurite growth from PC12h-R (a cell line derived from cultured nerve cells) was investigated at various cell densities. At the cell density 102104 cells/ml neurites appeared even without NGF. In contrast, no neurite appeared without NGF in single cell culture. The neurite growth observed in plural cell culture without NGF was only partially inhibited by antibody to NGF receptor (Ab-NGFR). However, the effect of the used medium alone was mostly inhibited by Ab-NGFR. These results suggest that the neurite inducing potency of coexisting cells is via different sites than the NGF receptor.Abbreviations Ab-IgG-FITC anti-mouse-IgG labeled with fluorescein isothiocyanate - Ab-NF monoclonal antibody to neurofilament 160 kD - Ab-NGFR monoclonal antibody to NGF receptor - BDNF brain-derived neurotrophic factor - D-medium medium for differentiation culture - DMEM Dulbecco's modified Eagle's medium - M-medium medium for multiplication culture - NGF nerve growth factor - NGFR NGF receptor - NT-3 neurotrophin-3 - PC12 pheochromocytoma cell line - PC12h-R subclone of PC12 - Sup-D supernatant of D-medium  相似文献   
778.
779.
780.
Organismal aging is impacted by the deterioration of tissue turnover mechanisms due, in part, to the decline in stem cell function. This decline can be related to mitochondrial dysfunction and underlying energetic defects that, in concert, help drive biological aging. Thus, mitochondria have been described as a potential interventional target to hinder the loss of stem cell robustness, and subsequently, decrease tissue turnover decline and age-associated pathologies. In this review, we focused our analysis on the most recent literature on mitochondria and stem cell aging and discuss the potential benefits of targeting mitochondria in preventing stem cell dysfunction and thus influencing aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号