首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3438篇
  免费   112篇
  国内免费   92篇
  3642篇
  2024年   5篇
  2023年   32篇
  2022年   28篇
  2021年   54篇
  2020年   32篇
  2019年   58篇
  2018年   50篇
  2017年   37篇
  2016年   58篇
  2015年   49篇
  2014年   83篇
  2013年   132篇
  2012年   70篇
  2011年   79篇
  2010年   53篇
  2009年   113篇
  2008年   145篇
  2007年   130篇
  2006年   151篇
  2005年   180篇
  2004年   178篇
  2003年   133篇
  2002年   113篇
  2001年   133篇
  2000年   131篇
  1999年   116篇
  1998年   118篇
  1997年   119篇
  1996年   115篇
  1995年   108篇
  1994年   107篇
  1993年   104篇
  1992年   104篇
  1991年   84篇
  1990年   61篇
  1989年   51篇
  1988年   59篇
  1987年   51篇
  1986年   28篇
  1985年   45篇
  1984年   36篇
  1983年   16篇
  1982年   18篇
  1981年   15篇
  1980年   16篇
  1979年   9篇
  1978年   11篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
排序方式: 共有3642条查询结果,搜索用时 15 毫秒
931.
Summary Thirteen nuclear asymmetric hybrids were regenerated under selective conditions following fusion of chlorophyll-deficient protoplasts from cultivated tomato (Lycopersicon esculentum Mill.) and -(-irradiated protoplasts from the wild species Lycopersicon peruvianum var. dentatum Dun. All hybrid plants were classified as being asymmetric based on morphological traits, chromosome numbers and isozyme patterns. The majority of the hybrids inherited Lycopersicon peruvianum var. dentatum chloroplasts. Mitochondrial DNA analysis revealed mixed mitochondria populations deriving from both parents in some of the hybrids and rearranged mitochondrial DNA in others. The asymmetric hybrids express some morphological traits that are not found in either of the parental species. Fertile F1 plants were obtained after self-pollination of the asymmetric hybrids in four cases. The results obtained confirm the potential of asymmetric hybridization as a new source of genetic variation, and as a method for transferring of a part of genetic material from donor to recipient, and demonstrate that it is possible to produce fertile somatic hybrids by this technique.  相似文献   
932.
Thehypothesis that chemically induced stress tolerance in plants can betransferredto a larger clonal population regenerated by somatic embryogenesis wasevaluatedusing the triazole compound paclobutrazol as a chemical inducer of stresstolerance in Geranium (Pelargonium horturum Bailey). Seedswere imbibed in 3.4, 10.2 or 17.0 M (1, 3, 5 mgL–1) paclobutrazol for 24 h and germinatedfor 7 days. Hypocotyl explants were cultured in vitro toinduce somatic embryogenesis. Plants regenerated from somatic embryos wereexposed to heat stress at 56°C. Explants treated with3.4 M paclobutrazol yielded a substantially higher number ofsomatic embryos compared with untreated explants. In contrast, 17.0M paclobutrazol treatment inhibited embryogenesis producing asignificantly lower number of somatic embryos. There was no difference in theembryo number between control and 10.2 M treatment. Somaticembryos derived from 3.4 and 10.2 M paclobutrazol treatedexplants developed into plants at a faster rate than the control and 17.0M treatments. Plants derived from paclobutrazol-treatedexplants displayed a greater tolerance to heat stress compared with thecontrols. Observations in this study provide a technique for regeneratingplantsin tissue/cell culture with additional desirable traits such as stresstolerancewith minimal chemical contamination of the environment.  相似文献   
933.
研究胡萝卜体细胞胚不同发育阶段的细胞组织化学和蛋白质组成变化的结果表明:胚性愈伤组织主要源自维管束周围的细胞.球胚形成前期,淀粉粒和糊粉粒极性分布已很明显.子叶胚期,芽开始分化,有大量糊粉粒累积.在体细胞胚发育过程中,淀粉粒在胚性愈伤组织形成初期和球胚后期、糊粉粒在胚性愈伤组织形成后期和球胚期各有两次累积高峰.  相似文献   
934.
Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.  相似文献   
935.
A protocol for induction of direct somatic embryogenesis, secondary embryogenesis and plant regeneration of Dendrobium cv. Chiengmai Pink was developed. Thidiazuron (TDZ) at 0.3, 1 and 3 mg dm−3 induced 5–25 % of leaf tip segments of in vitro grown plants to directly form embryos after 60 d of culture, and 1 mg dm−3 TDZ was the best treatment. Somatic embryos mostly formed from leaf surfaces near cut ends, and occasionally found on leaf tips. Higher frequency of embryogenesis was obtained in light than in darkness. During subculture, secondary embryos developed from outer cell layers of primary embryos. All combinations of NAA (0, 0.1, 1 mg dm−3) and TDZ (0, 0.3, 1, 3 mg dm−3) increased the multiplication rate of embryos. It takes about 8 months from embryo induction, plantlet formation to eventually acclimatization in greenhouse.  相似文献   
936.
Several lines of research are now converging towards an integrated understanding of mutational mechanisms and their evolutionary implications. Experimentally, crystal structures reveal the effect of sequence context on polymerase fidelity; large-scale sequencing projects generate vast amounts of sequence polymorphism data; and locus-specific databases are being constructed. Computationally, software and analytical tools have been developed to analyze mutational data, to identify mutational hot spots, and to compare the signatures of mutagenic agents.  相似文献   
937.
Summary The production of asymmetric somatic hybrid calli after fusion between gamma-irradiated protoplasts from transgenic Solanum brevidens and protoplasts from S. tuberosum are reported. Transgenic (kanamycin-resistant, GUS-positive) S. brevidens plants and hairy root clones were obtained after transformation with Agrobacterium tumefaciens LBA 1060 (pRi1855) (pBI121) and LBA 4404 (pRAL4404) (pBI121), and A. rhizogenes LBA 9402 (pRi1855) (pBI121), respectively. Leaf protoplasts isolated from the transgenic plants or root protoplasts from the hairy root clones were fused with S. tuberosum leaf protoplasts, and several calli were selected on kanamycin-containing medium. The relative nuclear DNA content of the hybrid calli was measured by flow cytometry (FCM), and the percentages of DNA of the S. brevidens and S. tuberosum genomes in the calli were determined by dot blot analysis using species-specific DNA probes. Chromosome-specific restriction fragment length polymorphism (RFLP) markers were used to investigate the elimination of specific S. brevidens chromosomes in the hybrids. The combined data on FCM, dot blot and RFLP analysis revealed that 18–62% of the S. brevidens DNA was eliminated in the hybrid calli and that the RFLP marker for chromosome 7 was absent in seven out of ten calli. The absence of RFLP markers for chromosomes 5 and 11 hardly ever occurred. In most of the hybrids the ploidy level of the S. tuberosum genome had increased considerably.  相似文献   
938.
We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development.  相似文献   
939.
Summary Investigations into the mechanisms of somatic embryogenesis (SE) have largely focused on the hormonal regulation of the process and a repertoire of strategies has been developed to regenerate many species via SE. However, the genes that regulate the induction and development of somatic embryos have not been defined. In the recent times, regeneration via overexpression of genes, such as WUSCHEL or LEAFY COTYLEDON, in Arabidopsis has started to provide a basis for understanding the genes involved in SE. This has gone hand in hand with the availability of genome sequence information and the availability of mutants in model plants such as Arabidopsis and Medicago. An improved understanding of zygotic embryogenesis and the maintenance and differentiation of stem cells in the shoot meristem also helps to provide novel insights into the mechanisms of SE. This review examines the current understanding of the genetic regulation of SE in the context of current molecular understanding of plant development.  相似文献   
940.
Long-duration,high-frequency plant regeneration from cereal tissue cultures   总被引:7,自引:0,他引:7  
By visual examination of calli derived from germinating seeds of wheat, oats, rice, proso millet, and pearl millet it has been possible to visually select embryogenic (E) callus which, on transfer to a regeneration medium, forms plants an average of 33 times more frequently than non-embryogenic (NE) callus of equal mass. Embryogenic callus consists of small isodiametric cells averaging 31 m in diameter; NE callus consists of long tubular cells averaging 52 m in width and 355 m in length. Production of E callus is in many cases promoted by media containing 2,4-di- or 2,4,5-trichlorophenoxyacetic acid (2,4-D or 2,4,5-T) plus indole-3-acetic acid or tryptophan+kinetin. Production on NE callus is promoted by media containing 2,4-D or 2,4,5-T alone. As a result of initial experiments to optimize both media for E callus production and media for plant regeneration, callus derived in six passages from an average of 26 seeds could produce about 1,000 regenerated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - IAA indole-3-acetic acid - Kin kinetin - Trp L-tryptophan - E embryogenic - NE non-embryogenic  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号