首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5057篇
  免费   731篇
  国内免费   253篇
  2024年   12篇
  2023年   100篇
  2022年   108篇
  2021年   221篇
  2020年   243篇
  2019年   278篇
  2018年   226篇
  2017年   249篇
  2016年   281篇
  2015年   260篇
  2014年   286篇
  2013年   360篇
  2012年   227篇
  2011年   255篇
  2010年   191篇
  2009年   269篇
  2008年   227篇
  2007年   242篇
  2006年   186篇
  2005年   182篇
  2004年   149篇
  2003年   160篇
  2002年   129篇
  2001年   133篇
  2000年   105篇
  1999年   82篇
  1998年   79篇
  1997年   70篇
  1996年   68篇
  1995年   49篇
  1994年   50篇
  1993年   60篇
  1992年   51篇
  1991年   47篇
  1990年   41篇
  1989年   45篇
  1988年   36篇
  1987年   31篇
  1986年   30篇
  1985年   30篇
  1984年   36篇
  1983年   21篇
  1982年   35篇
  1981年   37篇
  1980年   15篇
  1979年   19篇
  1978年   9篇
  1977年   6篇
  1976年   7篇
  1974年   3篇
排序方式: 共有6041条查询结果,搜索用时 437 毫秒
991.
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.  相似文献   
992.
Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise‐AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade.  相似文献   
993.
The two foremost hypotheses on the evolutionary constraints on an organism's thermal sensitivity – the hotter‐is‐better expectation, and the specialist–generalist trade‐off – have received mixed support from empirical studies testing for their existence. Could these conflicting results reflect confusion regarding the organizational level (i.e. species > population > individual) at which these constraints should manifest? We propose that these evolutionary constraints should manifest at different organizational levels because of differences in their underlying causes and requirements. The hotter‐is‐better expectation should only manifest across separate evolutionary units (e.g. species, populations), and not within populations. The specialist–generalist trade‐off, by contrast, should manifest within as well as between separate evolutionary units. We measured the thermal sensitivity of sprint performance for 440 rainforest sun skinks (Lampropholis coggeri) representing 10 populations, and used the resulting performance curves to test for evidence for the hypothesized constraints at two organizational levels: (i) across populations and (ii) within populations. As predicted, the hotter‐is‐better expectation was evident only at the across‐population level, whereas the specialist–generalist trade‐off was evident within, as well as across, populations. Our results suggest that, depending on the processes that drive them, evolutionary constraints can manifest at different organizational levels. Consideration of these underlying processes, and the organizational level at which a constraint should manifest, may help resolve conflicting empirical results.  相似文献   
994.
The Texas fauna of the genus Anillinus Casey, 1918 includes three previously described species (A. affabilis (Brues), 1902, A. depressus (Jeannel), 1963 and A. sinuatus (Jeannel), 1963) and four new species here described: A. acutipennis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. comalensis Sokolov & Kavanaugh, sp. n. (type locality: 7 miles W of New Braunfels, Comal County, Texas); A. forthoodensis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. wisemanensis Sokolov & Kavanaugh, sp. n. (type locality: Wiseman Sink, Hays County, Texas). A key for identification of adults of these species is provided. The fauna includes both soil- and cave-inhabiting species restricted to the Balcones Fault Zone and Lampasas Cut Plain and adjacent areas underlain by the Edwards-Trinity Aquifer. Based on morphological and distributional data, we hypothesize that four lineages of endogean Anillinus species extended their geographical ranges from a source area in the Ouachita-Ozark Mountains to the Balconian region in central Texas. There the cavernous Edwards-Trinity aquifer system provided an excellent refugium as the regional climate in the late Tertiary and early Quaternary became increasingly drier, rendering life at the surface nearly impossible for small, litter-inhabiting arthropods. Isolated within the Edwards-Trinity aquifer system, these anilline lineages subsequently differentiated, accounting for the currently known diversity. The paucity of specimens and difficulty in collecting them suggest that additional undiscovered species remain to be found in the region.  相似文献   
995.
The tRNA adaptation index (tAI) is a widely used measure of the efficiency by which a coding sequence is recognized by the intra-cellular tRNA pool. This index includes among others weights that represent wobble interactions between codons and tRNA molecules. Currently, these weights are based only on the gene expression in Saccharomyces cerevisiae. However, the efficiencies of the different codon–tRNA interactions are expected to vary among different organisms. In this study, we suggest a new approach for adjusting the tAI weights to any target model organism without the need for gene expression measurements. Our method is based on optimizing the correlation between the tAI and a measure of codon usage bias. Here, we show that in non-fungal the new tAI weights predict protein abundance significantly better than the traditional tAI weights. The unique tRNA–codon adaptation weights computed for 100 different organisms exhibit a significant correlation with evolutionary distance. The reported results demonstrate the usefulness of the new measure in future genomic studies.  相似文献   
996.
Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long‐term study, we investigated the effects of food availability and elevated pCO2 (ca. 400, 1000 and 3000 μatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2, regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2, irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus.  相似文献   
997.
998.
The first goal of this study was to determine whether morphological variation in the freshwater blenny Salaria fluviatilis results in spatially structured populations distributed around Corsica, France, which would suggest genetically differentiated populations through reproductive isolation by distance. The second goal was to determine whether some morphological traits are related to water velocity, one of the most contrasting habitat characteristics in these rivers, which would suggest an adaptation to local conditions. The results showed that the morphology of S. fluviatilis differed among the three main geographic areas studied in Corsica and that geographically distant populations of S. fluviatilis were less similar morphologically and genetically than close ones. The results also indicated that the morphological differences among populations conformed to functional expectations. Overall, the results suggest that the morphological variation of S. fluviatilis from Corsican rivers is an adaptive response to water velocity and that these populations are in a process of reproductive isolation by distance.  相似文献   
999.
Consistent responses by various organisms to common environmental pressures represent strong evidence of natural selection driving geographical variation. According to Bergmann's and Allen's rules, animals from colder habitats are larger and have smaller limbs than those from warmer habitats to minimize heat loss. Although evidence supporting both rules in different organisms exists, most studies have considered only elevational or latitudinal temperature gradients. We tested for the effects of temperature associated with both elevation and latitude on body and appendage size of torrent ducks (Merganetta armata), a widespread species in Andean rivers. We found a negative relationship between body size and temperature across latitude consistent with Bergmann's rule, whereas there was a positive relationship between these variables along replicate elevational gradients at different latitudes. Limb‐size variation did not support Allen's rule along latitude, nor along elevation. High‐elevation ducks were smaller and had longer wings than those inhabiting lower elevations within a river. We hypothesize that temperature is likely a major selective pressure acting on morphology across latitudes, although hypoxia or air density may be more important along elevational gradients. We conclude that the effect of temperature on morphology, and hence the likelihood of documenting ecogeographical ‘rules’, depends on the environmental context in which temperature variation is examined. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 850–862.  相似文献   
1000.
Latitudinal clines in thermal reaction norms of development are a common phenomenon in temperate insects. Populations from higher latitudes often develop faster throughout the range of relevant temperatures (i.e countergradient variation) because they must be able to complete their life cycle within a shorter seasonal time window compared to populations at lower latitudes. In the present study, we experimentally demonstrate that two species of butterflies Anthocharis cardamines (L.) and Pieris napi (L.) instead show a cogradient variation in thermal reaction norms of post‐winter pupal development so that lower latitude populations develop faster than higher latitude populations. The two species share host plants but differ in the degree of phenological specialization, as well as in the patterns of voltinism. We suggest that the pattern in A. cardamines, a univoltine phenological specialist feeding exclusively on flowers and seedpods, is the result of selection for matching to the phenological pattern of its local host plants. The other species, P. napi, is a phenological generalist feeding on the leaves of the hosts and it shows a latitudinal cline in voltinism. Because the latitudinal pattern in P. napi was an effect of slow development in a fraction of the pupae from the most northern population, we hypothesize that this population may include both bivoltine and univoltine genotypes. Consequently, although the two species both showed cogradient patterns in thermal reaction norms, it appears likely that this was for different reasons. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 981–991.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号