首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   24篇
  国内免费   17篇
  333篇
  2024年   2篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2019年   16篇
  2018年   10篇
  2017年   13篇
  2016年   9篇
  2015年   8篇
  2014年   17篇
  2013年   27篇
  2012年   6篇
  2011年   13篇
  2010年   15篇
  2009年   13篇
  2008年   12篇
  2007年   21篇
  2006年   17篇
  2005年   21篇
  2004年   14篇
  2003年   16篇
  2002年   13篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1973年   1篇
排序方式: 共有333条查询结果,搜索用时 0 毫秒
11.
In this paper we address the contribution of different endocytic pathways to the intracellular uptake and processing of differently sized latex particles and of plasmid DNA complexes by means of fluorescence microscopy and FACS analysis. By using a number of specific inhibitors of either clathrin-dependent or caveolae-dependent endocytosis we were able to discriminate between these two pathways. Latex particles smaller than 200 nm were internalized exclusively by clathrin-mediated endocytosis, whereas larger particles entered the cells via a caveolae-dependent pathway.

The route of uptake of plasmid DNA complexes appears strongly dependent on the nature of the complexes. Thus, lipoplexes containing the cationic lipid DOTAP, were exclusively internalized by a clathrin-dependent mechanism, while polyplexes prepared from the cationic polymer polyethyleneimine (PEI) were internalized in roughly equal proportions by both pathways. Upon incubation of cells with lipoplexes containing the luciferase gene abundant luciferase expression was observed, which was effectively blocked by inhibitors of clathrin-dependent endocytosis but not by inhibitors of the caveolae-dependent uptake mechanism. By contrast, luciferase transfection of the cells with polyplexes was unaffected by inhibition of clathrin-mediated endocytosis, but was nearly completely blocked by inhibitors interfering with the caveolae pathway. The results are discussed with respect to possible differences in the mechanism by which plasmid DNA is released from lipoplexes and polyplexes into the cytosol and to the role of size in the uptake and processing of the complexes. Our data suggest that improvement of non-viral gene transfection could very much benefit from controlling particle size, which would allow targeting of particle internalization via a non-degradative pathway, involving caveolae-mediated endocytosis.  相似文献   
12.
13.
Cationic liposomes are commonly used as vectors to effectively introduce foreign genes into target cells. In another function, we recently showed that cationic liposomes bound to the mast cell surface suppress the degranulation induced by the cross‐linking of high‐affinity immunoglobulin E receptor in a time‐ and dose‐dependent manner. This suppression is mediated by the impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via the inhibition of store‐operated Ca2+ entry. Further, we revealed that the mechanism underlying an impaired [Ca2+]i increase is the inhibition of the activation of the phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Yet, how cationic liposomes inhibit the PI3K‐Akt pathway is still unclear. Here, we focused on caveolin‐1, a major component of caveolae, which is reported to be involved in the activation of the PI3K‐Akt pathway in various cell lines. In this study, we showed that caveolin‐1 translocated from the cytoplasm to the plasma membrane after the activation of mast cells and colocalized with the p85 subunit of PI3K, which seemed to be essential for PI3K activity. Meanwhile, cationic liposomes suppressed the translocation of caveolin‐1 to the plasma membrane and the colocalization of caveolin‐1 with PI3K p85 also at the plasma membrane. This finding provides new information for the development of therapies using cationic liposomes against allergies.  相似文献   
14.
Liposome dispersions obtained from the mixture of gemini surfactants of the type alkane-α,ω-diyl-bis(alkyldimethylammonium bromide) and helper lipid DOPC create complexes with DNA showing a regular inner microstructure, identified by small angle X-ray diffraction as condensed lamellar phase (Lαc). In addition to the Lαc phase, a coexisting lamellar phase LB was also identified in the complexes formed, with periodicities in the range ~ 8.8-5.7 nm, at ionic strengths corresponding to 50-200 mM NaCl. The periodicities of LB phase did not correspond to those identified in liposome dispersion without DNA using small angle neutron scattering. The observed phase separation is shown to depend on the interplay between the surface charge density of cationic liposomes, ionic strength and method of complex preparation. The effect of ionic strength on complex formation was studied by isothermal titration calorimetry and zeta potential measurements. High ionic strength reduces the fraction of bound DNA in the complexes, and the isoelectric point is attained at a ratio of DNA/gemini surfactant which is lower than the one that can be estimated by calculation based on nominal charges of CLs and DNA.  相似文献   
15.
16.
Microbes are increasingly developing defensive mechanisms against known drugs via mutations. There are signs of emergence of superbugs immune to most known antibiotics available. The need for a new class of drugs to counteract this problem is of paramount importance for continued general well being of mankind. A new class of drugs, antimicrobial peptides, has not been fully exploited primarily due to high cytotoxicity, poor lipophilicity preventing systemic distribution and stability. We have synthesised 9-amino acid residue cationic peptides RH01 and RH02 lipidated with myristoyl and octyl groups respectively. These peptides exhibited potent antimicrobial activity and low cytotoxicity. The lipopeptide RH01 has antimicrobial activity against a broad range of microorganisms including bacteria, yeast and filamentous fungi with greatest activity toward Gram-positive bacteria, including S. aureus MRSA stain, MIC’s ranging between 2–8 μM. The MIC for Gram-negative bacteria was higher ranging from between 30–250 μM. RH01 also had antimicrobial activity towards fungi showing good activity against the pathogenic yeast Candida albicans but was less active towards the filamentous fungi Aspergillus niger. The antimicrobial activity of RH01 as a measure of Ki(50) for E. coli and S. aureus was 35–60 μM and 3–7 μM, respectively. In-house data showed the compound is bactericidal even at higher bacteria concentration. The octylated lipopeptide RH02 has similar activities towards S. aureus (3.3 μM) and E coli (53.3 μM) as the myristolated RH01. There was no haemolytic activity of the lipopeptide RH01 towards human blood. Acute intravenous toxicity study in mice showed that both RH01 and RH02 induced no macroscopic abnormalities at their highest non-lethal dose of 75 mg/kg and 150 mg/kg bodyweight, respectively.Australian Peptide Conference Issue.  相似文献   
17.
Antisera raised againstl-phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and a cationic cell-wall peroxidase, which had all been purified from suspension-cultured cells of French bean, have been used to carry out immunogold localisations in the growing plant. Immunoglobulin-G fractions were prepared from each antiserum and used to study the distribution of the enzymes in differentiating and wounded hypocotyls by immunogold techniques and visualisation by both light and electron microscopy. Following silver enhancement to amplify the signal, proteins were detected by confocal microscopy in both developing (pre-xylem/ phloem) and later metaxylem stelar tissue.l-Phenylalanine ammonia-lyase and C4H also accumulated in cells adjacent to metaxylem, presumably involved in maintaining a supply of phenylpropanoid precursors to the enucleated xylem for further lignin synthesis. In these cells, PAL subunits were cytosolic although some were associated with endomembrane. Cinnamate-4-hydroxylase was wholly associated with membrane and particularly high concentrations were found in the Golgi bodies. The cationic peroxidase accumulated in xylem at sites of secondary thickening and in the middle lamella. The three proteins are also involved in defensive lignification. Thus when visualised by light microscopy, PAL and C4H were seen to accumulate to high levels throughout the cell types in wound sites and especially in the epidermal cells. An even more intense general distribution was found upon hyperinduction of wounded cells with-aminooxy--phenylpropionic acid. At the subcellular level, PAL was found to be localised in the cytosol in the wounded cells; however, because of the loss of membrane through mechanical damage, association with membrane structures, particularly endoplasmic reticulum, in unwounded cells is not entirely ruled out. Cinnamate-4-hydroxylase was associated with membranes when these were preserved. In wounded tissue, the peroxidase was found at the growing edges of tylose-like structures in the vascular xylem.Abbreviations AOPP -aminooxy--phenylpropionic acid - C4H cinnamic acid-4-hydroxylase - CHS chalcone synthase - GRP glycine-rich glycoprotein - HRGP hydroxyproline-rich glycoprotein - Ig immunoglobulin - PAL phenylalanine ammonia-lyase G.P.B. thanks the Agicultural and Food Research Council for support.  相似文献   
18.
Infection associated with implanted biomaterials is common and costly and such infections are extremely resistant to antibiotics and host defenses. Consequently, there is a need to develop surfaces which resist bacterial adhesion and colonization. The broad spectrum synthetic cationic peptide melimine has been covalently linked to a surface via two azide linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA), and the resulting surfaces characterized by X-ray photoelectron spectroscopy and contact angle measurements. The quantity of bound peptide was estimated by a modified Bradford assay. The antimicrobial efficacy of the two melimine-modified surfaces against Pseudomonas aeruginosa and Staphylococcus aureus was compared by scanning electron microscopy (SEM) and fluorescence microscopy. Attachment of melimine via ABA gave an approximately 4-fold greater quantity of melimine bound to the surface than attachment via FNA. Surfaces melimine-modified by either attachment strategy showed significantly reduced bacterial adhesion for both strains of bacteria. P. aeruginosa exposed to ABA–melimine and FNA–melimine surfaces showed marked changes in cell morphology when observed by SEM and a reduction of approximately 15-fold (p < 0.001) in the numbers of adherent bacteria compared to controls. For the ABA–melimine surface there was a 33% increase in cells showing damaged membranes (p = 0.0016) while for FNA–melimine there was no significant difference. For S. aureus there were reductions in bacterial adhesion of approximately 40-fold (p < 0.0001) and 5-fold (p = 0.008) for surfaces modified with melimine via ABA or FNA, respectively. There was an increase in cells showing damaged membranes on ABA–melimine surfaces of approximately 87% (p = 0.001) compared to controls, while for FNA–melimine there was no significant difference observed. The data presented in this study show that melimine has excellent potential for development as a broad spectrum antimicrobial coating for biomaterial surfaces. Further, it was observed that the efficacy of antimicrobial activity is related to the method of attachment.  相似文献   
19.
Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB?+?0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential—the factors that are of great importance for the use of liposomes as drug carriers.  相似文献   
20.
A novel strategy to prepare negatively charged and small DNA-containing liposomes after condensation of plasmid DNA by a cationic lipid in deoxycholate micelle environment is described. The average diameter of resulting complexes was 62±8 nm. DNA-containing liposomes were then prepared by dialysis. The shape of the resulting liposomes was spherical. The average diameter and the surface charge of the liposomes were 86±6 nm and −24±3 mV, respectively. The plasmid DNA inside liposomes remained in a supercoiled form after incubation with DNase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号