首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   121篇
  国内免费   27篇
  1006篇
  2024年   13篇
  2023年   10篇
  2022年   8篇
  2021年   8篇
  2020年   35篇
  2019年   58篇
  2018年   63篇
  2017年   48篇
  2016年   45篇
  2015年   23篇
  2014年   61篇
  2013年   56篇
  2012年   28篇
  2011年   50篇
  2010年   14篇
  2009年   48篇
  2008年   43篇
  2007年   29篇
  2006年   24篇
  2005年   25篇
  2004年   29篇
  2003年   22篇
  2002年   22篇
  2001年   14篇
  2000年   14篇
  1999年   14篇
  1998年   16篇
  1997年   13篇
  1996年   17篇
  1995年   7篇
  1994年   14篇
  1993年   12篇
  1992年   24篇
  1991年   9篇
  1990年   10篇
  1989年   12篇
  1988年   8篇
  1987年   7篇
  1986年   11篇
  1985年   10篇
  1984年   3篇
  1983年   6篇
  1982年   5篇
  1981年   2篇
  1980年   12篇
  1978年   1篇
  1977年   3篇
排序方式: 共有1006条查询结果,搜索用时 8 毫秒
991.
Liposomal vinorelbine formulation is desirable, as it might improve the therapeutic activity of vinorelbine. However, because of its lipophilic and membrane-permeable properties, vinorelbine is hard to be formulated into liposomes using conventional drug-loading technologies. To improve vinorelbine retention, ammonium salts of several anionic agents were employed to prepare liposomal vinorelbine formulations. It was found that 5-sulfosalicylate (5ssa) could form stable complexes with vinorelbine and stabilize entrapped vinorelbine. The resultant vesicles had an in vitro release t1/2 of ~12.49 hours in NH3-containing media, which is longer than those of sulfate and phytate vesicles (~0.57 hours). The circulation half-life of vinorelbine after the injection of 5ssa vesicles into normal mice was ~13.01 hours, accounting for ~2-fold increase relative to that of sulfate vesicles. Improved drug retention correlated with enhanced antitumor efficacy. In the RM-1/c57 model, 5ssa vesicles were more efficacious than sulfate vesicles (P?<?0.05). In RM-1/BDF1 and Lewis lung cancer/c57 models, antitumor efficacy was also considerably improved after vinorelbine encapsulation into 5ssa vesicles. For instance, in the RM/BDF1 model, liposomal vinorelbine was at least 4-fold more therapeutically active than free vinorelbine. Our results demonstrated that 5ssa could stabilize vinorelbine relative to other anions, resulting in the formulation with improved drug retention and efficacy. Improved vinorelbine retention might be associated with the formation of insoluble precipitate, which could be proved by precipitation study and decreased drug-release rate at a high D/L ratio.  相似文献   
992.
Evelyn Martin  Ewald Komor 《Planta》1980,148(4):367-373
Sucrose is taken up and accumulated by cotyledons of Ricinus communis L. Autoradiographic studies reveal a predominant accumulation of sucrose in the phloem of the cotyledons. The export of sucrose from the cotyledons to hypocotyl and roots proceeds in the phloem by mass flow. These results, taken together with previous data, are experimental evidence for proton-sucrose symport as the mechanism of phloem loading.  相似文献   
993.
A. J. Peel  S. Rogers 《Planta》1982,154(1):94-96
Potassium as the chloride, nitrate or sulphate or sodium as the chloride, were applied at a concentration of 50 mM either to the xylem of stem segments or to the cambial surface of bark strips of willow. Potassium chloride increased the concentration of sucrose in sieve tube exudate collected via severed aphid stylets, without significantly affecting the volume flow rate, or the concentration of potassium in the exudate. The increase in the sucrose level in the sieve tube sap was shown to be due to a stimulation of loading, rather than to an enhancement of longitudinal transport. Potassium nitrate and sulphate or sodium chloride, were not as effective as potassium chloride in stimulating the loading of sucrose. It is suggested that uptake of the cation into cells supplying sugars to the sieve tube is linked to the rate of release of sugars by the supplying cells.  相似文献   
994.
The effect of the oxygen availability over the performance of an air‐breathing microbial fuel cell (MFC) was studied by limiting the oxygen supply to the cathode. It was found that anodic reaction was the limiting stage in the performance of the MFC while oxygen was fully available at cathode. As the cathode was depleted of oxygen, the current density becomes limited by oxygen transport to the electrode surface. The exerted current density was maintained when oxygen mole fraction was higher than 10% due to the very good performance of the cathodic catalysts. However, the current density drastically falls when working at lower concentrations because of mass transfer limitations. In this sense it must be highlighted that the maximum exerted power, when oxygen mole fraction was higher than 10%, was almost three times higher than that obtained when oxygen mole fraction was 5%. Regarding to the wastewater treatment, a significant decrease in the COD removal was obtained when the MFC performance was reduced due to the limited availability of oxygen, which indicates the significant role of the electrogenic microorganisms in the COD removal in MFC. In addition, the low availability of oxygen at the cathode leads to a lower presence of oxygen at the anode, resulting in an increase in the coulombic efficiency. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:900–907, 2015  相似文献   
995.
996.
The ever‐increasing demand for high‐performing, economical, and safe power storage for portable electronics and electric vehicles stimulates R&D in the field of chemical power sources. In the past two decades, lithium‐ion technology has proven itself a most robust technology, which delivers high energy and power capabilities. At the same time, current technology requires that the energy and power capabilities of Li‐ion batteries be ‘beefed up’ beyond the existing state of the art. Increasing the battery voltage is one of the ways to improve battery energy density; in Li‐ion cells, the objective of current research is to develop a 5‐volt cell, and at the same time to maintain high specific charge capacity, excellent cycling, and safety. Since current anode materials possess working potentials fairly close to the potential of a lithium metal, the focus is on the development of cathode materials. This work reviews and analyzes the current state of the art, achievements, and challenges in the field of high‐voltage cathode materials for Li‐ion cells. Some suggestions regarding possible approaches for future development in the field are also presented.  相似文献   
997.
Objectives: Wear of attachments leads to a loss of retention and potentially reduces the function of complete dentures. This study evaluated the retention force changes of different prefabricated attachment systems for implant‐supported overdentures to estimate the wear constancy and applicability in clinical practice. Methods: Four prefabricated attachment systems were tested [Group SG: retentive ball attachment (Straumann, Switzerland) with gold matrix, Group ST: retentive ball attachment (Straumann, Switzerland) with titanium spring matrix, Group IB: UNOR i‐Ball with Ecco matrix (UNOR, Switzerland) and Group IMZ: IMZ®‐TwinPlus ball attachment with gold matrix (DENTSPLY Friadent, Germany)]. Ten samples of each system were subjected to 10 000 insertion‐separation cycles. Results: Results showed that all types of attachments showed wear, which led to a loss of retention force after an initial increase at the beginning of the wear simulation. Attachments with a plastic retention insert or gold matrices underwent the smallest changes in retention force. The titanium spring system showed the largest changes in retention force and a greater variation between the different cycles and specimen. This behaviour is probably caused by a large fitting tolerance of the titanium spring. Conclusions: Attachment systems which possess a male and female component of different material composition are preferable. They show smaller changes in the retention force. For retention force increase and wear compensation, an attachment system should be adjustable.  相似文献   
998.
Rechargeable magnesium batteries (RMBs) are attractive candidates for large‐scale energy storage owing to the high theoretical specific capacity, rich earth abundance, and good safety characteristics. However, the development of desirable cathode materials for RMBs is constrained by the high polarity and slow intercalation kinetics of Mg2+ ions. Herein, it is demonstrated that 2‐ethylhexylamine pillared vanadium disulfide nanoflowers (expanded VS2) with enlarged interlayer distances exhibit greatly boosted electrochemical performance as a cathode material in RMBs. Through a one‐step solution‐phase synthesis and in situ 2‐ethylhexylamine intercalation process, VS2 nanoflowers with ultralarge interlayer spacing are prepared. A series of ex situ characterizations verify that the cathode of expanded VS2 nanoflowers undergoes a reversible intercalation reaction mechanism, followed by a conversion reaction mechanism. Electrochemical kinetics analysis reveal a relatively fast Mg‐ion diffusivity of expanded VS2 nanoflowers in the order of 10?11–10?12 cm2 s?1, and the pseudocapacitive contribution is up to 64% for the total capacity at 1 mV s?1. The expanded VS2 nanoflowers show highly reversible discharge capacity (245 mAh g?1 at 100 mA g?1), good rate capability (103 mAh g?1 at 2000 mA g?1), and stable cycling performance (90 mAh g?1 after 600 cycles at 1000 mA g?1).  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号