首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2014年   2篇
  2013年   9篇
  2011年   1篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
11.
In holometabolous insects, there is a complete body remodeling from larva to adult. We determined in Ceratitis capitata that the transition from pre-pupa to pupa, 40 to 48 h after puparium formation (h APF), is a key moment of metamorphosis; when salivary glands, intestine, fat body, and muscles are in different stages of cell death. At 44-46 h APF, muscles from segments 1-3 (thoracic region) appeared fully disintegrated, whereas posterior muscles just started death processes. To understand some of the biochemical events eventually involved in histolytic processes during early metamorphosis, two cysteine peptidases coined "Metamorphosis Associated Cysteine Peptidase" (MACP-I and MACP-II) were purified to homogeneity from 40-46-h APF insects. Both enzymes were inhibited by Ep-475, a specific inhibitor of papain-like cysteine-peptidases. MACP-I is a single chain protein with an apparent molecular mass of 80 kDa and includes several isoforms with pI values of pH 6.25-6.35, 6.7, and 7.2. The enzyme has an optimum pH of 5.0 and its pH stability ranges from pH 4.0 to 6.0. The molecular weight and N-terminal sequence suggest that MACP-I might be a novel enzyme. MACP-II is an acidic single chain protein with a pI of pH 5.85 and an apparent molecular mass of 30 kDa. The enzyme is labile with a maximum stability in the pH range of 4.0 to 6.0 and an optimum pH among 5.0 to 6.0. MAPCP-II characteristics suggest it is a cathepsin B-like enzyme.  相似文献   
12.
Vasiljeva O  Turk B 《Biochimie》2008,90(2):380-386
Cysteine cathepsins have been known for a long time to play an important role in cancer progression and metastasis. Several studies have proposed the concept of anti-cathepsin therapy in cancer treatment. On the other hand, cysteine cathepsins have been recently found to play a role in tumour cell death through mediation of apoptosis. The purpose of this mini-review is therefore to provide an insight into the mechanisms by which cysteine cathepsins modulate apoptosis and/or participate in tumour invasion, and to evaluate the impact of these enzymes on both tumour progression and development of potential strategies for cancer treatment.  相似文献   
13.
Cathepsin P is a recently discovered placental cysteine protease that is structurally related to the more ubiquitously expressed, broad-specificity enzyme, cathepsin L. We studied the substrate specificity requirements of recombinant mouse cathepsin P using fluorescence resonance energy transfer (FRET) peptides derived from the lead sequence Abz-KLRSSKQ-EDDnp (Abz, ortho-aminobenzoic acid and EDDnp, N-[2,4-dinitrophenyl]ethylenediamine). Systematic modifications were introduced resulting in five series of peptides to map the S(3) to S(2)(') subsites of the enzyme. The results indicate that the subsites S(1), S(2), S(1)('), and S(2)('), present a clear preference for hydrophobic residues. The specificity requirements of the S(2) subsite were found to be more restricted, preferring hydrophobic aliphatic amino acids. The S(3) subsite of the enzyme presents a broad specificity, accepting negatively charged (Glu), positively charged (Lys, Arg), and hydrophobic aliphatic or aromatic residues (Val, Phe). For several substrates, the activity of cathepsin P was markedly regulated by kosmotropic salts, particularly Na(2)SO(4). No significant effect on secondary or tertiary structure could be detected by either circular dichroism or size exclusion chromatography, indicating that the salts most probably disrupt unfavorable ionic interactions between the substrate and enzyme active site. A substrate based upon the preferred P(3) to P(2)(') defined by the screening study, ortho-aminobenzoic-Glu-Ile-Phe-Val-Phe-Lys-Gln-N-(2,4-dinitrophenyl)ethylenediamine (cleaved at the Phe-Val bond) was efficiently hydrolyzed in the absence of high salt. The k(cat)/K(m) for this substrate was almost two orders of magnitude higher than that of the original parent compound. These results show that cathepsin P, in contrast to other mammalian cathepsins, has a restricted catalytic specificity.  相似文献   
14.
The conversion of muscle into meat is a complex process of major concern for meat scientists due to its influence on the final meat quality. The aim of this study was to investigate the occurrence of autophagic processes in the conversion of muscle into meat. Our findings demonstrated, for the first time, the occurrence of autophagic processes in the muscle tissue at early postmortem period (2 h to 24 h) in both beef breeds studied (Asturiana de los Valles and Asturiana de la Montaña) showing significant time-scale differences between breeds, which could indicate a role of this process in meat maturation. These breeds have different physiological features: while Asturiana de los Valles is a meat-specialized breed showing high growth rate, an elevated proportion of white fibers in the muscle and low intramuscular fat level, Asturiana de la Montaña is a small- to medium-sized rustic breed adapted to less-favored areas, showing more red fibers in the muscle and a high intramuscular fat content.  相似文献   
15.
16.
17.
Before a class II molecule can be loaded with antigenic material and reach the surface to engage CD4+ T cells, its chaperone, the class II-associated invariant chain (Ii), is degraded in a stepwise fashion by proteases in endocytic compartments. We have dissected the role of cathepsin S (CatS) in the trafficking and maturation of class II molecules by combining the use of dendritic cells (DC) from CatS(-/-) mice with a new active site-directed probe for direct visualization of active CatS. Our data demonstrate that CatS is active along the entire endocytic route, and that cleavage of the lysosomal sorting signal of Ii by CatS can occur there in mature DC. Genetic disruption of CatS dramatically reduces the flow of class II molecules to the cell surface. In CatS(-/-) DC, the bulk of major histocompatibility complex (MHC) class II molecules is retained in late endocytic compartments, although paradoxically, surface expression of class II is largely unaffected. The greatly diminished but continuous flow of class II molecules to the cell surface, in conjunction with their long half-life, can account for the latter observation. We conclude that in DC, CatS is a major determinant in the regulation of intracellular trafficking of MHC class II molecules.  相似文献   
18.
Microglia, a primary immune effector cell of the central nervous system (CNS) affects homeostatic, neuroprotective, regenerative and degenerative outcomes in health and disease. Despite these broad neuroimmune activities linked to specific environmental cues, a precise cellular genetic profile for microglia in the context of disease and repair has not been elucidated. To this end we used nucleic acid microarrays, proteomics, immunochemical and histochemical tests to profile microglia in neuroprotective immune responses. Optic and sciatic nerve (ON and SN) fragments were used to stimulate microglia in order to reflect immune consequences of nervous system injury. Lipopolysaccharide and latex beads-induced microglial activation served as positive controls. Cytosolic and secreted proteins were profiled by surface enhanced laser desorption ionization-time of flight (SELDI-TOF) ProteinChip, 1D and 2D difference gel electrophoresis. Proteins were identified by peptide sequencing with tandem mass spectrometry, ELISA and western blot tests. Temporal expression of pro-inflammatory cytokines, antioxidants, neurotrophins, and lysosomal enzyme expression provided, for the first time, a unique profile of secreted microglia proteins with neuroregulatory functions. Most importantly, this molecular and biochemical signature supports a broad range of microglial functions for debris clearance and promotion of neural repair after injury.  相似文献   
19.
Cell death in health and disease   总被引:1,自引:0,他引:1  
Cell death is clearly an important factor in development, homeostasis, pathology, and in aging, but medical efforts based on controlling cell death have not become major aspects of medicine. There are several reasons why hopes have been slow to be fulfilled, and they present indications for new directions in research. Most effort has focused on the machinery of cell death, or the proximate effectors of apoptosis and their closely-associated and interacting proteins. But cells have many options other than apoptosis. These include autophagy, necrosis, atrophy, and stepwise or other alternate means of self-disassembly. The response of a cell to a noxious or otherwise intimidating signal will depend heavily on the history, lineage, and current status of the cell. Many metabolic and other processes adjust the sensitivity of cells to signals, and viruses aggressively attempt to regulate the death of their host cells. Another complicating factor is that many death-associated proteins may have functions totally unrelated to their role in cell death, generating the possibility of undesirable side effects if one interferes with them. In the future, the challenge will be more to understand the challenge to the cell from a more global standpoint, including many more aspects of metabolism, and work toward alleviating or provoking the challenge in a targeted fashion.  相似文献   
20.
Cathepsins L and B are lysosomal cysteine proteinases whose activities and cellular location are altered in many types of cancers and cancer cell lines. Cathepsins L and B play an unspecified role in cancer invasion and metastasis. The purpose of our study was to determine whether cathepsins L and B are important for the ability of two prostate cancer cell lines, PC3 and DU 145, to invade the basement membrane-like preparation, Matrigel®. Exposure of PC3 and DU145 to the irreversible cysteine proteinase inhibitor, E64, decreases the invasive ability of DU145, but not PC3. PC3 and DU145 were treated with the phorbol ester analogue, phorbol 12-myristate 13-acetate (PMA), a known tumor promoter that activates protein kinase C and contributes to the metastatic phenotype. PMA increased secreted cathepsin L+B activity and the invasive ability of PC3 and DU145; co-exposure to E64 and PMA decreased both cathepsin L+B activity and invasion. We conclude that DU145 requires cathepsin L+B activity more than PC3 for the invasion of the Matrigel®. When the amount of secreted cathepsin L+B activity is increased by PMA treatment, however, PC3 becomes dependent on cathepsin L+B for invasion. Our study demonstrates that modulation of the amount of secreted cathepsin L+B activity influences the invasive phenotype of PC3 and DU145.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号