首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   77篇
  国内免费   78篇
  1038篇
  2024年   2篇
  2023年   13篇
  2022年   21篇
  2021年   21篇
  2020年   29篇
  2019年   37篇
  2018年   34篇
  2017年   20篇
  2016年   21篇
  2015年   19篇
  2014年   55篇
  2013年   70篇
  2012年   34篇
  2011年   55篇
  2010年   39篇
  2009年   37篇
  2008年   56篇
  2007年   55篇
  2006年   49篇
  2005年   46篇
  2004年   38篇
  2003年   43篇
  2002年   54篇
  2001年   25篇
  2000年   19篇
  1999年   17篇
  1998年   16篇
  1997年   18篇
  1996年   5篇
  1995年   13篇
  1994年   10篇
  1993年   11篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   8篇
  1982年   3篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有1038条查询结果,搜索用时 15 毫秒
81.
HIV‐infected patients possess anti‐integrase (IN) IgGs and IgMs that, after isolation by chromatography on IN‐Sepharose, unlike canonical proteases, specifically hydrolyze only IN but not many other tested proteins. Hydrolysis of intact globular IN first leads to formation of many long fragments of protein, while its long incubation with anti‐IN antibodies, especially in the case of abzymes (Abzs) with a high proteolytic activity, results in the formation of short and very short oligopeptides (OPs). To identify all sites of IgG‐mediated proteolysis corresponding to known AGDs of integrase, we have used a combination of reverse‐phase chromatography, matrix‐assisted laser desorption/ionization spectrometry, and thin‐layer chromatography to analyze the cleavage products of two 20‐mer OPs corresponding to these AGDs. Both OPs contained 9–10 mainly clustered major, medium, and minor sites of cleavage. The main superficial cleavage sites of the AGDs in the intact IN and sites of partial or deep hydrolysis of the peptides analyzed do not coincide. The active sites of anti‐IN Abzs are localized on their light chains, whereas the heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of Abzs provide high specificity of IN hydrolysis. The affinity of anti‐IN Abzs for intact integrase was ~1000‐fold higher than for the OPs. The data suggest that both OPs interact mainly with the light chains of different monoclonal Abzs of the total pool of IgGs, which possesses lower affinity for substrates; and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific and remarkably different in comparison with the cleavage of intact globular IN. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
82.
83.
细胞色素P450酶在自然界中广泛存在,能催化多种类型的氧化反应,在有机合成和生物化工方面具有重要的应用潜力。尽管大多数P450酶通常需要辅酶和复杂的电子传递体系协助活化氧分子,一些P450酶也可以利用过氧化氢作为末端氧化剂,这极大地简化了催化循环,为P450酶的合成应用提供了一条新的简便途径。本文系统地介绍了几类过氧化氢驱动的P450酶催化体系,包括脂肪酸羟化酶P450SPα和P450BSβ、脂肪酸脱羧酶P450OleTJE、人工改造的羟化酶P450BM3和P450cam突变体、以及基于底物误识别策略的P450-H2O2体系。通过分析催化反应机制,本文探讨了P450-H2O2催化体系在目前存在的挑战和可能的解决途径,并对其进一步应用前景进行了展望。  相似文献   
84.
Ida Namslauer  Robert B. Gennis 《BBA》2010,1797(5):550-556
In this work we have investigated the effect of a pathogenic mitochondrial DNA mutation found in human colon cells, at a functional-molecular level. The mutation results in the amino-acid substitution Tyr19His in subunit I of the human CytcO and it is associated with respiratory deficiency. It was introduced into Rhodobacter sphaeroides, which carries a cytochrome c oxidase (cytochrome aa3) that serves as a model of the mitochondrial counterpart. The residue is situated in the middle of a pathway that is used to transfer substrate protons as well as protons that are pumped across the membrane. The Tyr33His (equivalent residue in the bacterial CytcO) structural variant of the enzyme was purified and its function was investigated. The results show that in the structurally altered CytcO the activity decreased due to slowed proton transfer; proton transfer from an internal proton donor, the highly-conserved Glu286, to the catalytic site was slowed by a factor of ∼ 5, while reprotonation of the Glu from solution was slowed by a factor of ∼ 40. In addition, in the structural variant proton pumping was completely impaired. These results are explained in terms of introduction of a barrier for proton transfer through the D pathway and changes in the coordination of water molecules surrounding the Glu286 residue. The study offers an explanation, at the molecular level, to the link between a specific amino-acid substitution and a pathogenic phenotype identified in human colon cells.  相似文献   
85.
JadH是羟化脱水双功能酶,参与杰多霉素生物合成中的聚酮后修饰反应,将2,3-dehydro-UWM6催化为dehydrorabelomycin。为了分析杰多霉素生物合成途径中后修饰氧化酶JadH结合、催化底物的关键氨基酸,构建了JadH与底物复合物的三维结构模型。利用该模型并结合JadH同源蛋白氨基酸序列比对分析,推测出JadH活性中心中可能参与底物结合或催化的关键氨基酸(R50、G51、L52、G53、F100、R221、I223、P295和G298)。通过定点突变及体外酶学实验对这些位点的突变体的催化活性进行评价,结果显示这些突变株活性均显著低于野生型,表明这9个氨基酸是JadH参与底物结合或催化的关键氨基酸。  相似文献   
86.
Butein and phloretin are chalcones that are members of the flavonoid family of polyphenols. Flavonoids have well-known antioxidant and anti-inflammatory activities. In rat primary hepatocytes, we examined whether butein and phloretin affect tert-butylhydroperoxide (tBHP)-induced oxidative damage and the possible mechanism(s) involved. Treatment with butein and phloretin markedly attenuated tBHP-induced peroxide formation, and this amelioration was reversed by l-buthionine-S-sulfoximine [a glutamate cysteine ligase (GCL) inhibitor] and zinc protoporphyrin [a heme oxygenase 1 (HO-1) inhibitor]. Butein and phloretin induced both HO-1 and GCL protein and mRNA expression and increased intracellular glutathione (GSH) and total GSH content. Butein treatment activated the ERK1/2 signaling pathway and increased Nrf2 nuclear translocation, Nrf2 nuclear protein-DNA binding activity, and ARE-luciferase reporter activity. The roles of the ERK signaling pathway and Nrf2 in butein-induced HO-1 and GCL catalytic subunit (GCLC) expression were determined by using RNA interference directed against ERK2 and Nrf2. Both siERK2 and siNrf2 abolished butein-induced HO-1 and GCLC protein expression. These results suggest the involvement of ERK2 and Nrf2 in the induction of HO-1 and GCLC by butein. In an animal study, phloretin was shown to increase GSH content and HO-1 expression in rat liver and decrease carbon tetrachloride-induced hepatotoxicity. In conclusion, we demonstrate that butein and phloretin up-regulate HO-1 and GCL expression through the ERK2/Nrf2 pathway and protect hepatocytes against oxidative stress.  相似文献   
87.
Aurora-A is a centrosome-localized serine/threonine kinase, which plays a critical role in mitotic and meiotic cell division processes. However, the regulation of Aurora-A is still not fully understood. Previously, we have found an intramolecular inhibitory regulation mechanism of Aurora-A: the N-terminal regulatory domain (aa 1–128, Nt) can interact with the C-terminal catalytic domain (aa 129–403, Cd) and inhibit the kinase activity of Aurora-A. In this study, we found that the PreLIM domain of Ajuba, another important activator of Aurora-A, induces the autophosphorylation of the C-terminal kinase domain of Aurora-A, and is phosphorylated by the C-terminal. Moreover, the LIM domain of Ajuba can competitively bind to the N-terminal of Aurora-A, and inhibited the interaction between N-terminal and C-terminal of Aurora A. Taken together, these results suggest a novel mechanism for regulation of Aurora-A by Ajuba.  相似文献   
88.
壳聚糖酶是一类对壳聚糖具有较高催化活性而几乎不水解几丁质的糖苷水解酶,其可将高分子量的壳聚糖转化为低分子量的功能性壳寡糖。近年来,对壳聚糖酶的相关研究取得了显著进展,因此,本文对其生化性质、晶体结构、催化机制和蛋白质工程改造进行总结和探讨,并对酶法制备壳寡糖纯品进行展望,这将加深研究者对壳聚糖酶作用机制的认识,推动壳聚糖酶的工业应用。  相似文献   
89.
We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4 ms) than with the bovine oxidase (~ 1 ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR → F and F → O reactions were slowed by factors of ~ 3 and ~ 10, respectively, and electron transfer from CuA to heme a during the PR → F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   
90.
Aldolase antibodies that operate via an enamine mechanism were developed by in vitro selection. Antibody Fab phage display libraries were created where the catalytic active site residues of aldolase antibodies 38C2 and 33F12 were combined with a naive human antibody V gene repertoire. Selection from these libraries with 1,3-diketones covalently trapped the amino groups of reactive lysine residues by formation of stable enaminones. The selected aldolase antibodies retained the essential catalytic lysine residue and its function in altered and humanized primary antibody structures. The substrate specificity of the aldolase antibodies was directly related to the structure of the diketone used for selection. The k(cat) values of the antibody-catalyzed retro-aldol reactions were correlated with the K(d) values, i.e. the reactivities of the selected aldolase antibodies for the corresponding diketones. Antibodies that bound to the diketone with a lower K(d) value displayed a higher k(cat) value in the retro-aldol reaction, and a linear relationship was observed in the plots of logk(cat) versus logK(d). These results indicate that selections with diketones directed the evolution of aldolase antibodies in vitro that operate via an enamine mechanism. This strategy provides a route to tailor-made aldol catalysts with different substrate specificities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号