首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   74篇
  国内免费   38篇
  933篇
  2024年   1篇
  2023年   8篇
  2022年   15篇
  2021年   17篇
  2020年   31篇
  2019年   32篇
  2018年   31篇
  2017年   19篇
  2016年   28篇
  2015年   48篇
  2014年   27篇
  2013年   48篇
  2012年   20篇
  2011年   35篇
  2010年   53篇
  2009年   51篇
  2008年   44篇
  2007年   43篇
  2006年   39篇
  2005年   43篇
  2004年   46篇
  2003年   37篇
  2002年   38篇
  2001年   32篇
  2000年   19篇
  1999年   7篇
  1998年   12篇
  1997年   15篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   16篇
  1991年   8篇
  1990年   4篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有933条查询结果,搜索用时 15 毫秒
921.
Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).  相似文献   
922.
Energy, Life, and ATP   总被引:1,自引:0,他引:1  
The mechanism by which ATP is synthesized during oxidative and photophosphorylation has been elucidated by oxygen exchange and other studies: a novel form of catalysis--termed rotary catalysis--is involved.  相似文献   
923.
Anodic stripping voltammetry of bacterial growth medium containing copper(II) and ampicillin shows that Cu(II) is complexed by the antibiotic and that this complex decomposes to give Cu(II) complexes with ligands derived from ampicillin. At pH 7, substantial decomposition of ampicillin occurs over a few minutes, and even the very low levels of Cu(II) in Chelex-extracted medium are able effectively to catalyse the decomposition. The significance of this observation was shown during the screening of an Escherichia coli cosmid library for clones exhibiting increased resistance to Zn(II), Co(II) or Cd(II); the unexpected growth of the ampicillin-sensitive host E. coli strain on Luria-Bertani plates containing ampicillin and any of these metals was attributed to metal ion-catalysed decomposition of ampicillin. The instability of ampicillin (and other beta-lactam antibiotics) to metal ion-catalysed hydrolysis means that great care must be taken to ensure that such reactions do not occur in growth media. Furthermore, it is clear that double selection for resistance to ampicillin and metals such as Cu(II), Zn(II), Co(II) and Cd(II) is impossible.  相似文献   
924.
Benzyl β-D-glucopyranoside was prepared by an enzyme-catalysed direct reaction between D-glucose, or better cellobiose, and benzyl alcohol in the presence of a minimum amount of water. The enzyme β-glucosidase was used in the immobilized form (adsorbed onto macroporous polyethylene terephthalate or covalently bound on polyglycidyl methacrylate), enabling multiple application.  相似文献   
925.
李冉  宋聪  张翔  贾振华 《生物工程学报》2023,39(11):4682-4693
D-甘露糖具有多种功能活性,在食品、医药、农业等行业应用广泛。D-甘露醇氧化酶可以高效地将D-甘露醇转化为D-甘露糖,在D-甘露糖的酶法制备中具有应用潜力。从类芽孢杆菌(Paenibacillus sp.) HGF5中发掘出一个D-甘露醇氧化酶(PsOX),与天蓝链霉菌(Streptomyces coelicolor)来源的D-甘露醇氧化酶(AldO)氨基酸序列相似性为50.94%,分子量约为47.4 kDa,构建了重组表达质粒pET-28a-PsOX并在大肠杆菌BL21(DE3)中表达,PsOX对D-甘露醇的Kmkcat/Km值分别为5.6 mmol/L、0.68 L/(s∙mmol),最适pH和温度分别为7.0和35 ℃,在60 ℃以下保持稳定。PsOX对400 mmol/L D-甘露醇的摩尔转化率为95.2%。利用PsOX与AldO全细胞分别催化73 g/L D-甘露醇,PsOX反应9 h后反应完全,生成70 g/L D-甘露糖,相较于AldO具有更高的催化效率。PsOX作为新型D-甘露糖氧化酶为D-甘露糖的酶法制备提供了依据。  相似文献   
926.
Pentadentate Schiff-base complexes of oxovanadium(IV), the ligands of which were derived from salicylaldehyde derivatives with a variety of substituents and two kinds of amines (2,2-bis(aminoethyl)amine and 3,3-bis(aminopropyl)amine), were prepared, and their coordination geometries in the solid state were determined by X-ray diffraction and IR measurements and those in CH2Cl2 by EPR measurements. They were found to retain distorted octahedral coordination in the solid state. They showed the structural change depending on the type of the substituent. The complexes which reacted with tert-butylhydroperoxide converted methyl phenyl sulfide to the corresponding sulfoxide at lower rates of reaction than tridentate N-salicylidene-2-aminoethanolato oxovanadium(IV) ([VO(salae)]) and tetradentate (N,N-bis(salicylidene)ethylenediaminato)oxovanadium(IV) ([VO(salen)]).  相似文献   
927.
928.
Two novel chiral dimer and trimer strands composed of m-terphenyl groups linked through p-diethynylbenzene units with the chiral amidine group and achiral piperazine group introduced at the terminus or center of the strands, respectively, and its complementary achiral carboxylic acid dimer and trimer were synthesized. The complementary chiral/achiral strands form an excess-handed double-helical structure as supported by intense split-type Cotton effects in the absorption regions of the conjugated backbones biased by the chiral amidinium–carboxylate salt bridges. The double-helical trimer was found to catalyze the direct aldol reaction of cyclohexanone with 4-nitrobenzaldehyde and produce the products with a moderate enantioselectivity despite the fact that the catalytically active bifunctional piperazine/carboxylic acid pair introduced in the middle is achiral, indicating the key role of the one-handed double-helical framework for supramolecular bifunctional organocatalysis.  相似文献   
929.
930.
Chorismate mutase (CM), an essential enzyme at the branch-point of the shikimate pathway, is required for the biosynthesis of phenylalanine and tyrosine in bacteria, archaea, plants, and fungi. MtCM, the CM from Mycobacterium tuberculosis, has less than 1% of the catalytic efficiency of a typical natural CM and requires complex formation with 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase for high activity. To explore the full potential of MtCM for catalyzing its native reaction, we applied diverse iterative cycles of mutagenesis and selection, thereby raising kcat/Km 270-fold to 5 × 105 m−1s−1, which is even higher than for the complex. Moreover, the evolutionarily optimized autonomous MtCM, which had 11 of its 90 amino acids exchanged, was stabilized compared with its progenitor, as indicated by a 9 °C increase in melting temperature. The 1.5 Å crystal structure of the top-evolved MtCM variant reveals the molecular underpinnings of this activity boost. Some acquired residues (e.g. Pro52 and Asp55) are conserved in naturally efficient CMs, but most of them lie beyond the active site. Our evolutionary trajectories reached a plateau at the level of the best natural enzymes, suggesting that we have exhausted the potential of MtCM. Taken together, these findings show that the scaffold of MtCM, which naturally evolved for mediocrity to enable inter-enzyme allosteric regulation of the shikimate pathway, is inherently capable of high activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号