首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   74篇
  国内免费   37篇
  2023年   8篇
  2022年   15篇
  2021年   17篇
  2020年   31篇
  2019年   32篇
  2018年   31篇
  2017年   19篇
  2016年   28篇
  2015年   48篇
  2014年   27篇
  2013年   48篇
  2012年   20篇
  2011年   35篇
  2010年   53篇
  2009年   51篇
  2008年   44篇
  2007年   43篇
  2006年   39篇
  2005年   43篇
  2004年   46篇
  2003年   37篇
  2002年   38篇
  2001年   32篇
  2000年   19篇
  1999年   7篇
  1998年   12篇
  1997年   15篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   16篇
  1991年   8篇
  1990年   4篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有932条查询结果,搜索用时 15 毫秒
51.
A major problem in predicting the enantioselectivity of an enzyme toward substrate molecules is that even high selectivity toward one substrate enantiomer over the other corresponds to a very small difference in free energy. However, total free energies in enzyme-substrate systems are very large and fluctuate significantly because of general protein motion. Candida antarctica lipase B (CALB), a serine hydrolase, displays enantioselectivity toward secondary alcohols. Here, we present a modeling study where the aim has been to develop a molecular dynamics-based methodology for the prediction of enantioselectivity in CALB. The substrates modeled (seven in total) were 3-methyl-2-butanol with various aliphatic carboxylic acids and also 2-butanol, as well as 3,3-dimethyl-2-butanol with octanoic acid. The tetrahedral reaction intermediate was used as a model of the transition state. Investigative analyses were performed on ensembles of nonminimized structures and focused on the potential energies of a number of subsets within the modeled systems to determine which specific regions are important for the prediction of enantioselectivity. One category of subset was based on atoms that make up the core structural elements of the transition state. We considered that a more favorable energetic conformation of such a subset should relate to a greater likelihood for catalysis to occur, thus reflecting higher selectivity. The results of this study conveyed that the use of this type of subset was viable for the analysis of structural ensembles and yielded good predictions of enantioselectivity.  相似文献   
52.
The enzyme glycinamide ribonucleotide transformylase (GART) catalyzes the transfer of a formyl group from formyl tetrahydrofolate (fTHF) to glycinamide ribonucleotide (GAR), a process that is pH-dependent with pK(a) of approximately 8. Experimental studies of pH-rate profiles of wild-type and site-directed mutants of GART have led to the proposal that His108, Asp144, and GAR are involved in catalysis, with His108 being an acid catalyst, while forming a salt bridge with Asp144, and GAR being a nucleophile to attack the formyl group of fTHF. This model implied a protonated histidine with pK(a) of 9.7 and a neutral GAR with pK(a) of 6.8. These proposed unusual pK(a)s have led us to investigate the electrostatic environment of the active site of GART. We have used Poisson-Boltzmann-based electrostatic methods to calculate the pK(a)s of all ionizable groups, using the crystallographic structure of a ternary complex of GART involving the pseudosubstrate 5-deaza-5,6,7,8-THF (5dTHF) and substrate GAR. Theoretical mutation and deletion analogs have been constructed to elucidate pairwise electrostatic interactions between key ionizable sites within the catalytic site. Also, a construct of a more realistic catalytic site including a reconstructed pseudocofactor with an attached formyl group, in an environment with optimal local van der Waals interactions (locally minimized) that imitates closely the catalytic reactants, has been used for pK(a) calculations. Strong electrostatic coupling among catalytic residues His108, Asp144, and substrate GAR was observed, which is extremely sensitive to the initial protonation and imidazole ring flip state of His108 and small structural changes. We show that a proton can be exchanged between GAR and His108, depending on their relative geometry and their distance to Asp144, and when the proton is attached on His108, catalysis could be possible. Using the formylated locally minimized construct of GART, a high pK(a) for His108 was calculated, indicating a protonated histidine, and a low pK(a) for GAR(NH(2)) was calculated, indicating that GAR is in neutral form. Our results are in qualitative agreement with the current mechanistic picture of the catalytic process of GART deduced from the experimental data, but they do not reproduce the absolute magnitude of the pK(a)s extracted from fits of k(cat)-pH profiles, possibly because the static time-averaged crystallographic structure does not describe adequately the dynamic nature of the catalytic site during binding and catalysis. In addition, a strong effect on the pK(a) of GAR(NH(2)) is produced by the theoretical mutations of His108Ala and Asp144Ala, which is not in agreement with the observed insensitivity of the pK(a) of GAR(NH(2)) modeled from the experimental data using similar mutations. Finally, we show that important three-way electrostatic interactions between highly conserved His137, with His108 and Asp144, are responsible for stabilizing the electrostatic microenvironment of the catalytic site. In conclusion, our data suggest that further detailed computational and experimental work is necessary.  相似文献   
53.
1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)2D3) has been shown to modulate not only proliferation and differentiation, but also apoptosis in malignant cells, indicating that it could be useful for the treatment of cancer and psoriasis. However, little information has been available on the binding conformation of the 1alpha,25(OH)2D3 molecule and its analogs with the vitamin D receptor (VDR). Therefore, we synthesized 2alpha-fluorinated A-ring analogs of 19-nor-1alpha,25(OH)2D3 in order to investigate the VDR-binding conformation of the A-rings on the basis of the (19)F NMR analysis. The 2alpha-fluoro-19-nor-1alpha,25-dihydroxyvitamin D3 A-ring analog thus synthesized via a asymmetric catalytic carbonyl-ene cyclization, shows significant activity in transactivation.  相似文献   
54.
A kinetic framework is developed to describe enzyme activity and stability in two-phase liquid-liquid systems. In particular, the model is applied to the enzymatic production of benzaldehyde from mandelonitrile by Prunus amygdalus hydroxynitrile lyase (pa-Hnl) adsorbed at the diisopropyl ether (DIPE)/aqueous buffer interface (pH = 5.5). We quantitatively describe our previously obtained experimental kinetic results (Hickel et al., 1999; 2001), and we successfully account for the aqueous-phase enzyme concentration dependence of product formation rates and the observed reaction rates at early times. Multilayer growth explains the early time reversibility of enzyme adsorption at the DIPE/buffer interface observed by both enzyme-activity and dynamic-interfacial-tension washout experiments that replace the aqueous enzyme solution with a buffer solution. The postulated explanation for the unusual stability of pa-Hnl adsorbed at the DIPE/buffer interface is attributed to a two-layer adsorption mechanism. In the first layer, slow conformational change from the native state leads to irreversible attachment and partial loss of catalytic activity. In the second layer, pa-Hnl is reversibly adsorbed without loss in catalytic activity. The measured catalytic activity is the combined effect of the deactivation kinetics of the first layer and of the adsorption kinetics of each layer. For the specific case of pa-Hnl adsorbed at the DIPE/buffer interface, this combined effect is nearly constant for several hours resulting in no apparent loss of catalytic activity. Our proposed kinetic model can be extended to other interfacially active enzymes and other organic solvents. Finally, we indicate how interfacial-tension lag times provide a powerful tool for rational solvent selection and enzyme engineering.  相似文献   
55.
Protein-chitosan (CS) films were made by casting a solution of proteins and CS on pyrolytic graphite electrodes. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) incorporated in CS films gave a pair of stable, well-defined, and quasi-reversible cyclic voltammetric peaks at about -0.33V vs saturated calomel electrode in pH 7 buffers, respectively, while catalase (Ct) in CS films showed a peak pair at about -0.46V which was not stable. All these peaks are located at the potentials characteristic of heme Fe(III)/Fe(II) redox couples of the proteins. The electrochemical parameters such as formal potentials (E degrees (')) and apparent heterogeneous electron-transfer rate constants (k(s)) were estimated by square-wave voltammetry with nonlinear regression analysis. Chitosan films contained considerable water and formed hydrogel in aqueous solution. Positions of the Soret absorbance band suggest that Mb and Hb in CS films keep their secondary structure similar to the native states in the medium pH range, while HRP and Ct retain their native conformation at least in the dry CS films. Scanning electron microscopy of the films demonstrated that interaction between the proteins and CS would make the morphology of dry protein-CS films very different from the CS films alone. Oxygen, trichloroacetic acid, nitrite, and hydrogen peroxide were catalytically reduced by all four proteins in CS films.  相似文献   
56.
Elongation of the primer 32pdA(pdA)8pA proceeds by thereaction of the 5-phosphorimidazolides of adenosine and uridine in the presence of montmorillonite clay. Daily addition of the activated nucleotides for up to 14 days results in theformation of 40–50 mers using the 5-phosphorimidazolide of adenosine (ImpA) and 25–30 mers using the 5-phosphorimidazolide of uridine (ImpU). The limitation on thelengths of the chains formed is not due to the inhibitors formedsince the same chain lengths were formed using 2–3 times the amount of montmorillonite catalyst. The shorter oligomers formedby the addition of U monomers is not due to its greater rate ofdecomposition since it was found that both the A and the U adducts decompose at about the same rates. Alkaline phosphatase hydrolysis studies revealed that some of the oligomers are cappedat the 5-end to form, with ImpA,Ap32pdA(pdA)8pA(pA)n. The extent of capping depends on the reaction time and the purine or pyrimidine base inthe activated mononucleotide. Hydrolysis with ribonuclease T2 followed by alkaline phosphatase determined the sites ofthe 3, 5- and 2, 5-phosphodiester bonding to the primer. The potential significance of the mineral catalyzed formation of 50 mer oligonucleotides to the origin of life basedon RNA (the RNA world scenario) is discussed.  相似文献   
57.
Using phase transition profile as an indicator of thermodynamic property and phase transition heat as the second indicator of the percentage of substrates unhydrolyzed, differential scanning calorimetry has been used to observe in detail the kinetics and thermodynamics of phospholipase A(2)-catalyzed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine large unilamellar vesicle (LUV) hydrolysis. Phase transition profiles show that the original LUV almost completely changes into a novel aggregate at the end of the latency, followed by an abrupt activation of the reaction. The phase transition profiles are asymmetric between the heating and cooling curves, indicating a thermodynamic mesostatic property of the system. The reaction in activated phase follows a single first-order kinetics and all of the substrates in vesicles can be hydrolyzed. All these evidences indicate that the products and substrates can freely exchange between the outer and the inner layers of the vesicles and the membrane of the vesicle in the activated phase is permeable. This permeability favors the exchange of the substrates and products, thus, resulting in the activation of the fast reaction.  相似文献   
58.
We present an analysis of the electrostatic properties in the catalytic site of papain (EC 3.4.22.2), an archetype enzyme of the C1 cysteine proteinase family, and we investigate their possible role in the formation, stabilization and regulation of the Cys25((-))...His159((+)) catalytic ion pair. The electrostatic properties were computed using a reassociation method based in multicentered multipolar expansions obtained from ab initio quantum calculations of overlapping protein fragments. Solvent effects were introduced by coupling the use of multicentered multipolar expansions to two continuum boundary element methods to solve the Poisson and the linearized Poisson-Boltzmann equations. The electrostatic profile found in the proton transfer region of papain showed that this enzyme has a well-defined electrostatic environment to favor the formation and stabilization of the catalytic ion pair. The papain catalytic site electrostatic profile can be considered as an electrostatic fingerprint of the papain family with the following characteristics: (i) the presence of a net electric field highly aligned in the (Cys25)-SG-->(His159)-ND1 direction; (ii) the electrostatic profile has a saddle-point character; (iii) it is basically a local environmental effect. Furthermore, our analysis describes a possible regulatory mechanism (the E(SG-->ND1) attenuation effect) controlling the ion pair reactivity and permits to infer the Asp57 acidic residue as the most probable candidate to act as the electrostatic modulator.  相似文献   
59.
BackgroundsSpontaneous deamidation and isoaspartate (IsoAsp) formation contributes to aging and reduced longevity in cells. A protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT) is responsible for minimizing IsoAsp moieties in most organisms.MethodsPCMT was purified in its native form from yeast Candida utilis. The role of the native PCMT in cell survival and protein repair was investigated by manipulating intracellular PCMT levels with Oxidized Adenosine (AdOx) and Lithium Chloride (LiCl). Proteomic Identification of possible cellular targets was carried out using 2-dimensional gel electrophoresis, followed by on-Blot methylation and mass spectrometric analysis.ResultsThe 25.4 kDa native PCMT from C. utilis was found to have a Km of 3.5 µM for AdoMet and 33.36 µM for IsoAsp containing Delta Sleep Inducing Peptide (DSIP) at pH 7.0. Native PCMT comprises of 232 amino acids which is coded by a 698 bp long nucleotide sequence. Phylogenetic comparison revealed the PCMT to be related more closely with the prokaryotic homologs. Increase in PCMT levels in vivo correlated with increased cell survival under physiological stresses. PCMT expression was seen to be linked with increased intracellular reactive oxygen species (ROS) concentration. Proteomic identification of possible cellular substrates revealed that PCMT interacts with proteins mainly involved with cellular housekeeping. PCMT effected both functional and structural repair in aged proteins in vitro.General significanceIdentification of PCMT in unicellular eukaryotes like C. utilis promises to make investigations into its control machinery easier owing to the familiarity and flexibility of the system.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号