首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   73篇
  国内免费   39篇
  933篇
  2024年   1篇
  2023年   8篇
  2022年   15篇
  2021年   17篇
  2020年   31篇
  2019年   32篇
  2018年   31篇
  2017年   19篇
  2016年   28篇
  2015年   48篇
  2014年   27篇
  2013年   48篇
  2012年   20篇
  2011年   35篇
  2010年   53篇
  2009年   51篇
  2008年   44篇
  2007年   43篇
  2006年   39篇
  2005年   43篇
  2004年   46篇
  2003年   37篇
  2002年   38篇
  2001年   32篇
  2000年   19篇
  1999年   7篇
  1998年   12篇
  1997年   15篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   16篇
  1991年   8篇
  1990年   4篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有933条查询结果,搜索用时 0 毫秒
21.
The condition for the minimum overall reactor volume of a given number of CSTR's in series is theoretically determined for a reversible, single reactant-single product (Uni-Uni) enzyme catalyzed reaction. The reactor network is assumed to operate in steady-state, isothermal conditions with a single phase and a constant activity of biocatalyst. The method is based on a mathematical analysis of the discrete substrate concentration profile along the CSTR's assuming complete micromixing. The algebraic equations describing the critical loci are obtained for the general case, the mathematical proof that these equations define a minimum is presented, and an exact solution arising from an asymptotic situation is found. An approximate analytical method of optimization based on the aforementioned critical behavior is reported and its validity and usefulness discussed. The formulae introduced can be used in more general situations as tools for getting the approximate range where the optimal overall volume of the series of CSTR's lies. Hence, the reasoning developed is important for the preliminary CSTR design and relevant in the initial steps of the more involved methods of numerical optimization. Finally, the enzymatic conversion of fumarate to L-malate is examined as a model system in order to assess the usefulness and applicability of the analysis developed.  相似文献   
22.
Abstract

In this study the authors attempt to correlate kinetic constants for carbamylation of AChE, by a series of carbamate inhibitors, with the conformational positioning of Trp84 in transition state complexes of the same carbamates with Torpedo AChE, as obtained by computerized molecular modelling. They present evidence for changes in the distance of the carbamates from the center of the indole ring which can be correlated with the bimolecular rate constants for inhibition. As a result the greater the distance from Trp84, the smaller the bimolecular inhibition constant value, k1 (= k2/Ka), becomes. In conclusion, the value of the biinolecular rate constant for selected AChE inhibitors (structural changes that have been hypothesised or natural alkaloids of unknown activity) which possess similar size and rigidity, can be obtained. Under these conditions energy minimization alone seems to be sufficient even to accurately predict protein-substrate interactions that actually occur. Modelling studies also suggest that conformational re-orientation of Trp84 in the transition state could produce an overall movement of the Cys67-Cys94 loop.  相似文献   
23.
The application of UV irradiation processes are successfully proposed for the first time in the fabrication of both of the two plastic electrodes in flexible dye solar cells (DSCs) and modules. For the realization of the photo‐electrode, a customized TiO2 paste formulation and UV processing method was developed which yields 134% (48%) performance enhancement with respect to the same (binder‐free) paste treated at 120 °C. UV treatment induces both complete removal of organic media and more efficient charge collection. Significantly, highly catalytic platinized flexible counter‐electrodes are also obtained via UV photo‐induced reduction of screen‐printed platinum precursor pastes based on hexachloroplatinic acid. Using both UV‐processed electrodes, a fully plastic DSC is fabricated with a conversion efficiency of 4.3% under 1 Sun (semitransparent) and 5.3% under 0.2 Sun (opaque). Performance is within 10% of the efficiency of a glass‐based DSC prepared with the same materials but with conventional high temperature processes. The material formulations and processes are simple, and easily up‐scaled over large areas, even directly and simultaneously applicable to the preparation of both the photo‐and counter‐electrode on the same substrate which enabled us to demonstrate the first module on plastic realized with a W series interconnection.  相似文献   
24.
Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for inhibition by several drugs. This approach has had marked success in inhibiting genotype 1 (HCV-1), the predominant genotype in the USA, Europe, and Japan. However, HCV-4a was found to resist inhibition by a number of these drugs, and little progress has been made to understand the structural basis of its drug resistivity. As a step forward, we sequenced the NS3 HCV-4a protease gene (strain ED43) and subsequently built a 3D structural model threaded through a template crystal structure of HCV-1b NS3 protease. The model protease, HCV-4a, shares 83% sequence identity with the template protease, HCV-1b, and has nearly identical rigid structural features. Molecular dynamics simulations predict similar overall dynamics of the two proteases. However, local dynamics and 4D analysis of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-4a NS3 protease. These results suggest that the divergent dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug resistivity seen in HCV-4a.  相似文献   
25.
26.
The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF1 has been determined at 2.5 Å resolution. The inhibitory region of IF1 from residues 1 to 36 is entrapped between the C-terminal domains of the αDP- and βDP-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F1-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic βE-subunits. The nucleotide binding site in βE-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.  相似文献   
27.
28.
Four chiral C2‐symmetric diols were synthesized in a straightforward three‐step reaction and demonstrated excellent enantioselectivities and good overall yields. Their catalytic activities were examined via the addition of diethylzinc to various aldehydes. The enantioselective addition of diethylzinc to 2‐methoxybenzaldehyde gave the corresponding chiral secondary alcohol with high yields (up to 95%) and moderate to good enantiomeric excess (up to 88%). All synthesized ligands were evaluated in the addition of diethylzinc to various aldehydes in the presence of an additional metal such as Ti(IV) complexes. Chirality 28:593–598, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
29.
Serious environmental problems, growing demand for energy, and the pursuit of environmental‐friendly, sustainable, and effective energy technologies to store and transform clean energy have all drawn great attention recently. As a part of the special issue “Energy Research in National Institute of Advanced Industrial Science and Technology (AIST)” this review systematically summarizes the research progress of metal–organic framework (MOF) composites and derivatives in energy applications, including catalytic CO oxidation, liquid‐phase chemical hydrogen storage, and electrochemical energy storage and conversion. Furthermore, the correlation between MOF‐based structures, synthetic strategies, and their corresponding performances is carefully discussed. The further scope and opportunities, expected improvements and challenges are also discussed. This review will not only benefit development of more feasible protocols to fabricate nanostructures for energy systems but also stimulate further interest in MOF composites and derivatives, for energy applications.  相似文献   
30.
Various 3-amino-, 3-aryloxy- and alkoxy-6-arylpyridazines have been synthesized by an electrochemical reductive cross-coupling between 3-amino-, 3-aryloxy- or 3-alkoxy-6-chloropyridazines and aryl or heteroaryl halides. In vitro antiproliferative activity of these products was evaluated against a representative panel of cancer cell lines (HuH7, CaCo-2, MDA-MB-231, HCT116, PC3, NCI-H727, HaCaT) and oncogenicity prevention of the more efficient derivatives was highlighted on human breast cancer cell line MDA-MB 468-Luc prior establishing their interaction with p44/42 and Akt-dependent signaling pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号