首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   8篇
  2018年   3篇
  2017年   7篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有99条查询结果,搜索用时 40 毫秒
61.
Variation in social environment can mitigate risks and rewards associated with occupying a particular patch. We aim to integrate Ideal Free Distribution (IFD) and Geometry of the Selfish Herd (GSH) to address an apparent conflict in their predictions of equal mean fitness between patches (IFD) and declining fitness benefits within a patch (GSH). We tested these hypotheses in a socio‐spatial context using individual caribou that were aggregated or disaggregated during calving and varied in their annual reproductive success (ARS). We then tested individual consistency of these spatial tactics. We reveal that two socio‐spatial tactics accorded similar mean ARS (IFD); however, ARS for aggregated individuals declined near the periphery (GSH). Individuals near the aggregation periphery exhibited flexibility, whereas others were consistent. The integration of classical theories through a contemporary lens of consistent individual differences provides evidence for an integrated GSH and IFD strategy that may represent an evolutionary stable state.  相似文献   
62.
Arctic ecosystems are especially vulnerable to global climate change as temperature and precipitation regimes are altered. An ecologically and socially highly important northern terrestrial species that may be impacted by climate change is the caribou, Rangifer tarandus . We predicted the current and potential future occurrence of two migratory herds of caribou [Rivière George herd (RG) and Rivière-aux-Feuilles (RAF) herd] under a Canadian General Circulation Model climate change scenario, across all seasons in the Québec–Labrador peninsula, using climatic and habitat predictor variables. Argos satellite-tracking collars have been deployed on 213 caribou between 1988 and 2003 with locations recorded every 4–5 days. In addition, we assembled a database of climate (temperature, precipitation, snowfall, timing and length of growing season) and habitat data obtained from the SPOT VEGETATION satellite sensor. Logistic regression models indicated that both climatic and physical habitat variables were significant predictors of current migratory caribou occurrence. Migratory caribou appeared to prefer regions with higher snowfall and lichen availability in the fall and winter. In the summer, caribou preferred cooler areas likely corresponding to a lower prevalence of insects, and they avoided disturbed and recently burnt areas. Climate change projections using climate data predicted an increased range for the RAF herd and decreased range for the RG herd during 2040–2069, limiting the herds to northeastern regions of the Québec–Labrador peninsula. Direct and indirect consequences of climate change on these migratory caribou herds possibly include alteration in habitat use, migration patterns, foraging behaviour, and demography, in addition to social and economic stress to arctic and subarctic native human populations.  相似文献   
63.
Spatial synchrony in population dynamics is a ubiquitous feature across a range of taxa. Understanding factors influencing this synchrony may shed light on important drivers of population dynamics. Three mechanisms influence the degree of spatial synchrony between populations: dispersal, shared predators, and spatial environmental covariance (the Moran effect). We assessed demographic spatial synchrony in recruitment (calf:cow ratio) of 10 northern mountain caribou herds in the Yukon Territory, Canada (1982–2008). Shared predators and dispersal were ruled out as causal mechanisms of spatial recruitment synchrony in these herds and therefore any spatial synchrony should be due to the Moran effect. We also assessed the degree of spatial synchrony in April snow depth to represent environmental variability. The regional average spatial synchrony in detrended residuals of April snow depth was 0.46 (95% CI 0.37 to 0.55). Spatial synchrony in caribou recruitment was weak at 0.13 (95% CI −0.06 to 0.32). The spatial scale of synchrony in April snow depth and caribou recruitment was 330.2 km (95% CI 236.3 to 370.0 km) and 170.0 km (95% CI 69.5 to 282.8 km), respectively. We also investigated how the similarity in terrain features between herds influenced the degree of spatial synchrony using exponential decay models. Only the difference in elevation variability between herds during calving was supported by the data. Herds with more similar elevation variability may track snowmelt ablation patterns in a more similar fashion, which would subsequently result in more synchronized predation rates on calves and/or nutritional effects impacting juvenile survival. Interspecific interactions with predators and alternate prey may also influence spatial synchrony of recruitment in these herds.  相似文献   
64.
Summary The biomass of forage, herbivores (caribou and moose) and predators (wolf) were estimated for four assemblages of large mammals along a latitudinal gradient in the Québec-Labrador peninsula and related to predictions made by two types of multitrophic level models. Wolves were present in three study areas, but they had been extirpated in the last one. Annual production of preferred forage exhibited a clear north-south increase for moose, but not for caribou. Neither the herbivore nor predator biomass increased along the latitudinal gradient: the highest herbivore biomass occurred in the wolf-free area and in the northernmost site, while the greatest predator density was observed in the southernmost site. Consequently, the ratio of the herbivore to forage biomass was the highest in the area devoid of wolves and in the northernmost site occupied by migratory caribou. Availability of forage per herbivore was the greatest in the moose-wolf and the caribou-moose-wolf assemblages. The observed data supported the multitrophic level model incorporating classical predator-prey relationships and producing stepwise accrual of trophic level biomass with increasing food chain length. In the northernmost site, the system was limited to two functional trophic levels and caribou were regulated by summer forage. Three functional trophic levels appeared to exist in the central study area where caribou and moose were preyed upon by wolves. Both herbivores were at very low density, the first one due probably to its poor adaptation to predation and the second because of an unproductive range. In the southernmost site, moose were clearly regulated by predation and kept much below the carrying capacity. With the extirpation of wolves in the last study area, moose were regulated by forage and the density exceeded that in the moose-wolf system by seven times even in a less productive range. Caribou, having primarily evolved under resource limitation, is replaced by a cervid better adapted to predation, the moose, in more productive three-link ecosystems.  相似文献   
65.
Genetic differentiation is generally assumed to be low in highly mobile species, but this simplistic view may obscure the complex conditions and mechanisms allowing genetic exchanges between specific populations. Here, we combined data from satellite-tracked migratory caribou (Rangifer tarandus), microsatellite markers, and demographic simulations to investigate gene flow mechanisms between seven caribou herds of eastern Canada. Our study included one montane, two migratory, and four sedentary herds. Satellite-tracking data indicated possibilities of high gene flow between migratory herds: overlap of their rutting ranges averaged 10% across years and 9.4% of females switched calving sites at least once in their lifetime. Some migratory individuals moved into the range of the sedentary herds, suggesting possibilities of gene flow between these herds. Genetic differentiation between herds was weak but significant (FST=0.015): migratory and montane herds were not significantly distinct (FST all9) than vice-versa (4Nm all<5), which suggests migratory herds had a demographic impact on sedentary herds. Demographic simulations showed that an effective immigration rate of 0.0005 was sufficient to obtain the empirical FST of 0.015, while a null immigration rate increased the simulated FST to >0.6. In conclusion, the weak genetic differentiation between herds cannot be obtained without some genetic exchanges among herds, as demonstrated by genetic and spatial data.  相似文献   
66.
67.
68.
69.
In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P < 0.001), greater than 1,250 kg/ha (P < 0.001) forage lichen biomass and stands older than 80 yr postfire (P < 0.001). After fires, forage lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ≥60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis-idaea) were necessary for predicting caribou use of winter range. © 2011 The Wildlife Society  相似文献   
70.
Increasing demands for energy have generated interest in expanding oil and gas production on the North Slope of Alaska, USA, raising questions about the resilience of barren-ground caribou (Rangifer tarandus) populations to new development. Although the amount of habitat lost directly to energy development in the Arctic will likely be relatively small, there are significant concerns about habitat that may be indirectly affected because of caribou avoidance behaviors. Behavioral responses to energy development for wildlife have been documented, but such responses are often assumed to dissipate over time, despite scant information on the ability of animals to habituate. To understand the long-term effects of energy development on barren-ground caribou, we investigated the behavior of the Central Arctic Herd in northern Alaska, which has been exposed to oil development on its summer range for approximately 40 years. Using recent (2015–2017) location data from global positioning system (GPS)-collared females, we conducted a zone of influence analysis to assess whether caribou reduced their use of habitat near energy development, and if so, the distance the effects attenuated. We conducted this analysis for the calving, post-calving, and mosquito harassment periods when caribou exhibit distinct resource selection patterns, and contrasted our results to past research that investigated the responses of the Central Arctic Herd immediately following the construction of the oil fields. Despite the long-term presence of energy development within the Central Arctic Herd summer range, we found that female caribou exhibited avoidance responses to infrastructure during all time periods, although the effects waned across the summer. Caribou reduced their use of habitat within 5 km of development during the calving period, within 2 km during the post-calving period, and within 1 km during the mosquito harassment period; these areas were predicted to overlap 12%, 15%, and 17% of important calving, post-calving, and mosquito period habitat, respectively. During the calving period, the indirect effects we observed were similar to those observed in past research, whereas during the post-calving and mosquito periods, we detected avoidance responses that had not been previously reported. These findings corroborate a growing body of evidence suggesting that habituation to industrial development in caribou in the Arctic is likely to be weak or absent, and emphasizes the value of minimizing the footprint of infrastructure within important seasonal habitat to reduce behavioral effects to barren-ground caribou. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号