首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   8篇
  2018年   3篇
  2017年   7篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有99条查询结果,搜索用时 781 毫秒
21.
Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves (Canis lupus) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk.  相似文献   
22.
23.
ABSTRACT Reduced to small isolated groups by anthropogenic habitat losses or habitat modifications, populations of many endangered species are sensitive to additive sources of mortality, such as predation. Predator control is often one of the first measures considered when predators threaten survival of a population. Unfortunately, predator ecology is often overlooked because relevant data are difficult to obtain. For example, the endangered Gaspésie caribou (Rangifer tarandus caribou) has benefited from 2 periods of predator control that targeted black bears (Ursus americanus) and coyotes (Canis latrans) in an attempt to reduce predation on caribou calves. Despite a high trapping effort, the number of predators removed has remained stable over time. To assess impact of predator movements on efficacy of a control program, we studied space use of 24 black bears and 16 coyotes over 3 years in and around the Gaspésie Conservation Park, Quebec, Canada, using Global Positioning System radiocollars. Annual home ranges of black bears averaged 260 km2 and 10 individuals frequented area used by caribou. Annual home ranges of resident coyotes averaged 121 km2, whereas dispersing coyotes covered >2,600 km2. Coyotes were generally located at lower altitudes than caribou. However, because coyotes undertook long-distance excursions, they overlapped areas used by caribou. Simulations based on observed patterns showed that 314 bears and 102 coyotes potentially shared part of their home range with areas used by female caribou during the calving period. Despite low densities of both predator species, extensive movement and use of nonexclusive territories seem to allow predators to rapidly occupy removal areas, demonstrating the need for recurrent predator removals. Our results underscore the necessity of considering complementary and alternative solutions to predator control to assure long-term protection of endangered species.  相似文献   
24.
Wild reindeer have a range that extends across the circumpolar region. In the last few decades, however, populations of wild reindeer have been on the decline. The reasons for these declines are poorly understood, but are suggested to be linked to both local and global climatic factors, disease, and human interference. Hardangervidda plateau in Norway is home to the largest wild reindeer population in Europe, and is at the southern end of its European range. This population is therefore of particular importance, particularly in the light of climate change. We investigated how weather and hunting have affected the wild reindeer population in Hardangervidda over the last two decades. Our findings suggest that the wild reindeer population in Hardangervidda is most affected by winter temperature and hunting, where colder temperatures and lower harvest rates typically result in higher growth rates. We did not find significant evidence for linear density dependence. Our results show trends across Hardangervidda, and give an indication of how region-wide weather and hunting pressure can affect the wild reindeer population. As new data emerge, future investigations should look into the existence and nature of density dependence and the influence of other weather and human disturbance related factors.  相似文献   
25.
Investigations of biophysical changes on earth caused by anthropogenic disturbance provide governments with tools to generate sustainable development policy. Canada currently experiences one of the fastest rates of boreal forest disturbance in the world. Plans to conserve the 330 000 km2 boreal forest in the province of Alberta exist but conservation targets and schedules must be aligned with rates of forest disturbance. We explore how disturbance rate, and the accuracy with which we detect it, may affect conservation success. We performed a change detection analysis from 1992 to 2008 using Landsat and SPOT satellite image data processing. Canada's recovery strategy for boreal caribou (Rangifer tarandus caribou) states that ≤35% of a caribou range can be either burned or within 500 m of a man‐made feature for caribou to recover. Our analyses show that by 2008 78% of the boreal forest was disturbed and that, if the current rate continues, 100% would be disturbed by 2028. Alberta plans to set aside 22% for conservation in a region encompassing oil sands development to balance economic, environmental, and traditional indigenous land‐use goals. Contrary to the federal caribou recovery strategy, provincial conservation plans do not consider wildfire a disturbance. Based on analyses used in the provincial plan, we apply a 250 m buffer around anthropogenic footprints. Landsat image analysis indicates that the yearly addition of disturbance is 714 km2 (0.8%). The higher resolution SPOT images show fine‐scale disturbance indicating that actual disturbance was 1.28 times greater than detected by Landsat. If the SPOT image based disturbance rates continue, the 22% threshold may be exceeded within the next decade, up to 20 years earlier than indicated by Landsat‐based analysis. Our results show that policies for sustainable development will likely fail if governments do not develop time frames that are grounded by accurate calculations of disturbance rates.  相似文献   
26.
Changes in primary productivity have the potential to substantially alter food webs, with positive outcomes for some species and negative outcomes for others. Understanding the environmental context and species traits that give rise to these divergent outcomes is a major challenge to the generality of both theoretical and applied ecology. In aquatic systems, nutrient-mediated eutrophication has led to major declines in species diversity, motivating us to seek terrestrial analogues using a large-mammal system across 598 000 km2 of the Canadian boreal forest. These forests are undergoing some of the most rapid rates of land-use change on Earth and are home to declining caribou (Rangifer tarandus caribou) populations. Using satellite-derived estimates of primary productivity, coupled with estimates of moose (Alces alces) and wolf (Canis lupus) abundance, we used path analyses to discriminate among hypotheses explaining how habitat alteration can affect caribou population growth. Hypotheses included food limitation, resource dominance by moose over caribou, and apparent competition with predators shared between moose and caribou. Results support apparent competition and yield estimates of wolf densities (1.8 individuals 1000 km−2) above which caribou populations decline. Our multi-trophic analysis provides insight into the cascading effects of habitat alteration from forest cutting that destabilize terrestrial predator–prey dynamics. Finally, the path analysis highlights why conservation actions directed at the proximate cause of caribou decline have been more successful in the near term than those directed further along the trophic chain.  相似文献   
27.
For conservation purposes, it is important to design studies that explicitly quantify responses of focal species to different land management scenarios. Here, we propose an approach that combines the influence of landscape matrices with the intrinsic attributes of remaining habitat patches on the space use behavior of woodland caribou (Rangifer tarandus caribou), a threatened subspecies of Rangifer. We sought to link characteristics of forest remnants and their surrounding environment to caribou use (i.e., occurrence and intensity). We tracked 51 females using GPS telemetry north of the Saguenay River (Québec, Canada) between 2004 and 2010 and documented their use of mature forest remnants ranging between 30 and ~170 000 ha in a highly managed landscape. Habitat proportion and anthropogenic feature density within incremental buffer zones (from 100 to 7500 m), together with intrinsic residual forest patch characteristics, were linked to caribou GPS location occurrence and density to establish the range of influence of the surrounding matrix. We found that patch size and composition influence caribou occurrence and intensity of use within a patch. Patch size had to reach approximately 270 km2 to attain 75% probability of use by caribou. We found that small patches (<100 km2) induced concentration of caribou activities that were shown to make them more vulnerable to predation and to act as ecological traps. Woodland caribou clearly need large residual forest patches, embedded in a relatively undisturbed matrix, to achieve low densities as an antipredator strategy. Our patch‐based methodological approach, using GPS telemetry data, offers a new perspective of space use behavior of wide‐ranging species inhabiting fragmented landscapes and allows us to highlight the impacts of large scale management. Furthermore, our study provides insights that might have important implications for effective caribou conservation and forest management.  相似文献   
28.
The Bathurst herd of barren-ground caribou (Rangifer tarandus groenlandicus) in the Canadian central arctic declined from an estimated 203,800 to 16,400 breeding females from 1986 to 2009, with the most rapid decline from 2006 to 2009. A key research and management question was whether the decline was mainly due to decreases in productivity alone or also due to reduced adult female survival. Investigating causes of the decline was hampered by a lack of direct estimates of caribou demographic parameters. We developed a demographic model that could be objectively fitted to field data to explore the mechanisms for the Bathurst decline, with a focus on the recent accelerated decline from 2006 to 2009. Our modeling indicated that the decline was driven by increasing negative trends in adult female and calf survival rates and possibly reduced fecundity The effect of a constant hunter harvest on the declining herd was one potential cause for the recent accelerated decline in adult survival. The demographic model detected negative trends in adult female survival that were not detected using standalone analyses of collar-based survival data. The model allowed rigorous interpretation of trends in productivity by controlling for the simultaneous influence of trends in adult, calf, and yearling survival and adult fecundity on field-based calf–cow ratios. Stochastic simulations suggested that large increases in adult survival and productivity would be needed for the herd to recover. Our methods enable objective modeling of caribou demography that can assist in caribou management based upon all sources of available data. © 2011 The Wildlife Society.  相似文献   
29.
The ‘Moran effect’ predicts that dynamics of populations of a species are synchronized over similar distances as their environmental drivers. Strong population synchrony reduces species viability, but spatial heterogeneity in density dependence, the environment, or its ecological responses may decouple dynamics in space, preventing extinctions. How such heterogeneity buffers impacts of global change on large‐scale population dynamics is not well studied. Here, we show that spatially autocorrelated fluctuations in annual winter weather synchronize wild reindeer dynamics across high‐Arctic Svalbard, while, paradoxically, spatial variation in winter climate trends contribute to diverging local population trajectories. Warmer summers have improved the carrying capacity and apparently led to increased total reindeer abundance. However, fluctuations in population size seem mainly driven by negative effects of stochastic winter rain‐on‐snow (ROS) events causing icing, with strongest effects at high densities. Count data for 10 reindeer populations 8–324 km apart suggested that density‐dependent ROS effects contributed to synchrony in population dynamics, mainly through spatially autocorrelated mortality. By comparing one coastal and one ‘continental’ reindeer population over four decades, we show that locally contrasting abundance trends can arise from spatial differences in climate change and responses to weather. The coastal population experienced a larger increase in ROS, and a stronger density‐dependent ROS effect on population growth rates, than the continental population. In contrast, the latter experienced stronger summer warming and showed the strongest positive response to summer temperatures. Accordingly, contrasting net effects of a recent climate regime shift—with increased ROS and harsher winters, yet higher summer temperatures and improved carrying capacity—led to negative and positive abundance trends in the coastal and continental population respectively. Thus, synchronized population fluctuations by climatic drivers can be buffered by spatial heterogeneity in the same drivers, as well as in the ecological responses, averaging out climate change effects at larger spatial scales.  相似文献   
30.
With increasing human activities and associated landscape changes, distributions of terrestrial mammals become fragmented. These changes in distribution are often associated with reduced population sizes and loss of genetic connectivity and diversity (i.e., genetic erosion) which may further diminish a species' ability to respond to changing environmental conditions and lead to local population extinctions. We studied threatened boreal caribou (Rangifer tarandus caribou) populations across their distribution in Ontario/Manitoba (Canada) to assess changes in genetic diversity and connectivity in areas of high and low anthropogenic activity. Using data from >1,000 caribou and nine microsatellite loci, we assessed population genetic structure, genetic diversity, and recent migration rates using a combination of network and population genetic analyses. We used Bayesian clustering analyses to identify population genetic structure and explored spatial and temporal variation in those patterns by assembling networks based on RST and FST as historical and contemporary genetic edge distances, respectively. The Bayesian clustering analyses identified broad‐scale patterns of genetic structure and closely aligned with the RST network. The FST network revealed substantial contemporary genetic differentiation, particularly in areas presenting contemporary anthropogenic disturbances and habitat fragmentation. In general, relatively lower genetic diversity and greater genetic differentiation were detected along the southern range limit, differing from areas in the northern parts of the distribution. Moreover, estimation of migration rates suggested a northward movement of animals away from the southern range limit. The patterns of genetic erosion revealed in our study suggest ongoing range retraction of boreal caribou in central Canada.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号